# Asymmetric Cryptography Module This module defines the asymmetric cryptography API for Scytl's JavaScript cryptographic library. The starting point for using this module is the instantiation of an asymmetric cryptography service. ## How to view, build and test the source code of this module Start by git cloning the project `comm/scytl-cryptolib` from `Stash`. The source code of this module will be found in the directory `scytl-cryptolib/cryptolib-js-asymmetric/lib`. To build this module, change to the directory `scytl-cryptolib/cryptolib-js-asymmetric` and do the following: ```java npm install --or-- mvn clean install -DskipTests ``` The unit tests of this module will be found in the directory `scytl-cryptolib/cryptolib-js-asymmetric/spec`. To run the tests, change to the directory `scytl-cryptolib/cryptolib-js-asymmetric` and do the following: ```javascript karma test --or-- mvn test ``` To only run a chosen test suite, add an `f` in front of the corresponding `describe` statement. For example: ```javascript fdescribe('create an asymmetric cryptography service that should be able to ..', function() ... ``` To only run a chosen test, add an `f` in front of the corresponding `it` statement. For example: ```javascript fit('create a new RsaPublicKey object', function() ... ``` **Note:** To build and test the entire `scytl-cryptolib` project, change to the directory `scytl-cryptolib` and do the following: ```javascript mvn clean install ``` ## How to generate the JSDoc for this module To generate the JSDoc for this module, change to the directory `scytl-cryptolib/cryptolib-js-asymmetric`, build the module (if not already done) and do the following: ```javascript node_modules/.bin/jsdoc lib ``` This will generate a file called `out`. Double click on the file `out/index.html` to view the JSDoc. ## How to `npm` install this module To `npm` install this module in standalone mode, do the following: ```javascript npm install --registry https://nexus.scytl.net/content/groups/public-npm/ scytl-asymmetric ``` To `npm` install this module as a dependency of your own module, do the following: 1. Add the following lines to the `dependencies` section of your module's `package.json` file. ```javascript "scytl-bitwise": "^2.1.0", "scytl-codec": "^2.1.0", "scytl-cryptopolicy": "^2.1.0", "scytl-securerandom": "^2.1.0", "scytl-asymmetric": "^2.1.0", ``` 2. Make sure that the `.npmrc` file of your module contains the following line. ```javascript registry=https://nexus.scytl.net/content/groups/public-npm/ ``` 3. Install all dependencies. ```javascript npm install ``` ## How to instantiate an asymmetric cryptography service The following example shows the default way to create a new instance of an asymmetric cryptography service. ```javascript var asymmetric = require('scytl-asymmetric'); var asymmetricService = asymmetric.newService(); ``` The following example shows how to override the default cryptographic policy used for asymmetric cryptography operations by changing the encryption key pair length to 3072 bits. ```javascript var cryptoPolicy = require('scytl-cryptopolicy'); var asymmetric = require('scytl-asymmetric'); var myPolicy = cryptoPolicy.newInstance(); myPolicy.asymmetric.secretKey.encryption.lengthBytes = cryptoPolicy.options.asymmetric.keyPair.encryption.keyLengthBits.KL_3072; var asymmetricService = asymmetric.newService({policy: myPolicy}); ``` **Note:** It is desirable to use the property `CryptographicPolicy.options` to override the default policy, as shown above, in order to ensure that one is using an option that is allowed by the cryptographic policy. The following example shows how to supply one's own secure random service object to the asymmetric cryptography service. ``` javascript var asymmetric = require('scytl-asymmetric'); var secureRandom = require('scytl-securerandom'); var mySecureRandomService = secureRandom.newService(); var asymmetricService = asymmetric.newService({ secureRandomService: mySecureRandomService }); ``` ## How to instantiate key objects. The following example shows how to create a new `RsaPublicKey` object from an RSA public key in PEM format and access its components. ```javascript var publicKey = asymmetricService.newRsaPublicKey(publicKeyPem); var modulus = publicKey.n; var publicExponent = publicKey.e; ``` The following example shows how to create a new `RsaPrivateKey` object from an RSA private key in PEM format and access its components. ```javascript var privateKey = asymmetricService.newRsasPrivateKey(privateKeyPem); var modulus = privateKey.n; var publicExponent = privateKey.e; var privateExponent = privateKey.d; var firstPrime = privateKey.p; var secondPrime = privateKey.q; var firstExponent = privateKey.dP; var secondExponent = privateKey.dQ; var coefficient = privateKey.qInv; ``` The following example shows how to create a new `RsaPublicKey` object from its components and serialize it to PEM format. ```javascript var publicKey = asymmetricService.newRsaPublicKey(n, e); var publicKeyPem = publicKey.toPem(); ``` The following example shows how to create a new `RsaPrivateKey` object from its components and serialize it to PEM format. ```javascript var privateKey = asymmetricService.newRsaPrivateKey(n, e, d, p, q, dP, dQ, qInv); var privateKeyPem = privateKey.toPem(); ``` **Note** Key objects must always be converted to PEM format before being used as input arguments to any cryptographic functions defined by this library. ## How to instantiate a key pair. The following example shows how to generate a new key pair and retrieve its public and private components, in PEM format. ```javascript var keyPairGenerator = asymmetricService.newKeyPairGenerator(); var keyPair = keyPairGenerator.next(); var publicKeyPem = keyPair.publicKey; var privateKeyPem = keyPair.privateKey; ``` The following example shows how to create a new key pair object from its components. ```javascript var keyPair = asymmetricService.newKeyPair(publicKeyPem, privateKeyPem); ``` ## How to digitally sign data and verify the signature The following examples show how to digitally sign some data and verify the resulting signature. The input data for signature generation and verification can be in the form of a `string` or a byte array, wrapped in a `Uint8Array` object. The output of the signature generation will be in the form of a byte array, wrapped in a `Uint8Array` object. ```javascript var asymmetric = require('scytl-asymmetric'); var codec = require('scytl-codec'); var asymmetricService = asymmetric.newService(); var signer = asymmetricService.newSigner().init(privateKeyPem); var sigVerifier = asymmetricService.newSignatureVerifier().init(publicKeyPem); ... var signature = signer.sign('mydata'); var verified = sigVerifier.verify(signature, 'myData'); expect(verified).toBeTruthy(); var signature = signer.sign(new Uint8Array[0x01, 0x02, 0x03]); var verified = sigVerifier.verify(signature, new Uint8Array[0x01, 0x02, 0x03]); expect(verified).toBeTruthy(); ``` The following example shows how to digitally sign some data with multiple parts. ```javascript var dataParts = ['myData1', 'myData2', 'myData3']; ... for (var i = 0; i < dataParts.length; i++) { signer.update(dataParts[i]); } var signature = signer.sign(); --or-- for (var i = 0; i < (dataParts.length-1); i++) { signer.update(dataParts[i]); } var signature = signer.sign('myData3'); ``` The following example shows how to verify a signature generated from some data with multiple parts. ```javascript for (var i = 0; i < dataParts.length; i++) { sigVerifier.update(dataParts[i]); } var verified = verifier.verify(signature); --or-- for (var i = 0; i < (dataParts.length-1); i++) { sigVerifier.update(dataParts[i]); } var verified = verifier.verify(signature, 'myData3'); ``` The following example shows how to digitally sign some data with multiple parts, using method chaining. ```javascript var signature = signer.update('myData1').update('myData2').update('myData3').sign(); --or-- var signature = signer.update('myData1').update('myData2').sign('myData3'); ``` The following example shows how to verify a signature generated from some data with multiple data parts, using method chaining. ```javascript var verified = sigVerifier.update('myData1').update('myData2').update('myData3').verify(signature); --or-- var verified = sigVerifier.update('myData1').update('myData2').verify(signature, 'myData3'); ``` ## How to encrypt and decrypt data The following examples show how to encrypt and decrypt some data. The input data of the encryption can be in the form of a `string` or a byte array, wrapped in a `Uint8Array` object. The output of both the encryption and the decryption will be in the form of a byte array, wrapped in a `Uint8Array` object. To retrieve encrypted data of type `string` the result of the decryption must be UTF-8 decoded. ```javascript var asymmetric = require('scytl-asymmetric'); var codec = require('scytl-codec'); var asymmetricService = asymmetric.newService(); var encrypter = asymmetricService.newEncrypter().init(publicKeyPem); var decrypter = asymmetricService.newDecrypter().init(privateKeyPem); ... var encryptedData = encrypter.encrypt('myData'); var decryptedData = codec.utf8Decode(decrypter.decrypt(encryptedData)); expect(decryptedData).toBe('myData'); var encryptedData = encrypter.encrypt(new Uint8Array[0x01, 0x02, 0x03]); var decryptedData = decrypter.decrypt(encryptedData); expect(decryptedData).toEqual(new Uint8Array[0x01, 0x02, 0x03]); ```