

Scytl sVote

Protocol Specifications

Software version 2.1

Document version 5.1

Scytl sVote

Protocol Specifications

2

Scytl – Secure Electronic Voting

STRICTLY CONFIDENTIAL

© Copyright 2018 – SCYTL SECURE ELECTRONIC VOTING, S.A. All rights reserved.

This Document is proprietary to SCYTL SECURE ELECTRONIC VOTING, S.A. (SCYTL) and is

protected by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are

protected by patent applications.

No part of this Document may be: (i) communicated to the public, by any means including the right of

making it available; (ii) distributed including but not limited to sale, rental or lending; (iii) reproduced

whether direct or indirectly, temporary or permanently by any means and/or (iv) adapted, modified or

otherwise transformed.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

Scytl sVote

Protocol Specifications

3

Table of contents

1 Introduction .. 9

1.1 Document organization .. 9

2 Solution overview .. 11

2.1 Mapping solution to VEleS Swiss regulation ... 17

3 System configuration process ... 18

3.1 Platform Root constitution and registration ... 25

3.2 Tenant constitution and registration .. 26

3.2.1 Tenant constitution .. 26

3.2.2 Tenant registration ... 26

3.3 System context credentials .. 27

3.3.1 Logging Context Keys ... 27

3.3.2 Context System Keys .. 28

3.4 Administration Board constitution and registration .. 29

3.4.1 Administration Board constitution .. 29

3.4.2 Administration Board registration .. 30

3.5 Control Components Credentials .. 31

3.5.1 Control Component CA ... 31

3.5.2 Control Components Logging Keys ... 31

3.5.3 Control Component Encryption Keys .. 32

4 Election configuration process .. 33

4.1 Notation ... 34

4.2 Create Election Event .. 45

4.2.1 Generation of local Certification Authorities (CA) .. 46

4.2.2 Selection of encryption parameters and voting option values generation 48

4.2.3 Generation of Control Components signing keys .. 48

4.2.4 Generation of Authentication Context Information .. 49

4.2.5 Generation of Election Information Context Information ... 50

4.2.6 Generation of Voting Workflow Context Information ... 50

4.3 Create Ballot .. 50

4.3.1 Assignation of voting option values ... 51

4.3.2 Assignation of attributes to voting options ... 54

4.4 Create Ballot Boxes ... 55

4.5 Create Election key ... 57

4.5.1 Create Electoral Board Authority ... 57

4.5.2 Create Control Components Mixing key .. 58

Scytl sVote

Protocol Specifications

4

4.5.3 Constitute Election key .. 58

4.6 Protocol Setup algorithm ... 60

4.6.1 Generate SDM encryption key pair ... 62

4.6.2 Generate Verification Card Set Data ... 62

4.6.3 Create Voting Card Set ... 63

4.6.4 Verify Setup ... 74

4.7 Create printing information .. 75

4.7.1 Printing Information if extended authentication is used ... 75

4.8 Generation of Vote Verification Context Information ... 75

4.9 Generation of Voter Materials Context Information ... 76

4.10 Generation of Extended Authentication Context Information .. 77

4.11 Password protection .. 77

4.12 Administration Board signature at configuration .. 78

4.12.1 Administration Board private key reconstruction ... 78

4.12.2 Data to sign .. 78

4.13 Administration Board signature verification at configuration ... 79

5 Voting phase .. 79

5.1 Protocol GetID algorithm ... 81

5.2 Authentication .. 83

5.2.1 Challenge-response mechanism ... 83

5.2.2 Authentication Token generation ... 85

5.3 Protocol GetKey algorithm ... 87

5.4 Send a vote.. 87

5.4.1 Protocol CreateVote algorithm .. 87

5.4.2 Protocol ProcessVote algorithm .. 91

5.4.3 Protocol CreateCC algorithm ... 94

5.4.4 Protocol CreateRC algorithm ... 97

5.4.5 Generate receipt and store vote .. 98

5.5 Protocol GetCC algorithm .. 99

5.6 Confirm a vote ... 99

5.6.1 Protocol Confirm algorithm .. 99

5.6.2 Protocol ProcessConfirm algorithm ... 100

5.7 Client-side receipt validation .. 104

5.8 Request Vote Cast Return Code and Receipt ... 105

6 Counting phase .. 106

6.1 Protocol Tally algorithm ... 106

6.1.1 Cleansing ... 107

6.1.2 Mixing and Decryption ... 107

Scytl sVote

Protocol Specifications

5

6.2 Ballot Box export ... 118

7 Audit phase (VerifyTally algorithm) ... 120

8 References ... 122

9 Appendix .. 123

9.1 Cryptographic primitives .. 123

9.1.1 RSA Key pair generation ... 123

9.1.2 ElGamal Key pair generation ... 123

9.1.3 X509 certificate generation .. 123

9.1.4 Schnorr proof generation ... 125

9.1.5 Exponentiation proof generation .. 126

9.1.6 Plaintext Equality proof generation .. 126

9.1.7 Mixing proof generation ... 128

9.1.8 Decryption proof generation .. 134

9.1.9 Shamir Threshold Secret Sharing split algorithm .. 135

9.1.10 Shamir Threshold Secret Sharing reconstruction algorithm .. 136

9.1.11 Random value generation ... 136

9.1.12 ElGamal encryption ... 137

9.1.13 ElGamal decryption ... 137

9.1.14 Maurer’s Unified Proofs Prover ... 138

9.1.15 ElGamal Re-encryption ... 139

9.1.16 ElGamal ciphertexts permutation .. 140

9.1.17 Permutation generation ... 140

9.1.18 Symmetric key generation ... 140

9.1.19 Message Authentication Code generation .. 141

9.1.20 Key Derivation Function: KDF1 specification .. 141

9.1.21 Password-based key derivation function ... 142

9.1.22 Hash generation .. 142

9.1.23 Digital signature generation ... 143

9.1.24 Symmetric encryption .. 143

9.1.25 Symmetric decryption .. 143

9.1.26 Group element generation ... 144

9.1.27 Commitment generation .. 144

9.1.28 Multi-exponentiation argument .. 145

9.1.29 Product argument .. 148

9.1.30 Hadamard product argument ... 149

9.1.31 Zero argument ... 153

9.1.32 Single value product argument .. 157

Scytl sVote

Protocol Specifications

6

9.2 Optimizations at the voting client context in the voting phase ... 159

9.2.1 Pre-computation at the Voting Client ... 159

9.3 EV Solution Intellectual Property Rights Notice (the Notice) ... 161

9.3.1 Definitions .. 161

9.3.2 Copyright notice ... 162

Scytl sVote

Protocol Specifications

7

List of figures

Figure 1 - Overview of the voting system components and communication channels 11

Figure 2 - Detailed view of the voting system modules and their interactions 16

Figure 3 - System certificate hierarchy .. 18

Figure 4 - Platform Root constitution and registration ... 25

Figure 5 - Tenant constitution and registration .. 26

Figure 6 - System Context credentials generation .. 27

Figure 7 - Administration Board constitution and registration ... 29

Figure 8 - Control Component Constitution and Registration ... 31

Figure 9 - Election configuration phase overview ... 34

Figure 10 - Create Election Event ... 45

Figure 11 - Election Event certificate hierarchy ... 46

Figure 12 - Control Components Election Event certificate hierarchy .. 46

Figure 13 - Create Election key ... 57

Figure 14 - Election key generation ... 57

Figure 15 - Protocol Setup algorithm ... 60

Figure 16 - Protocol GetID.. 81

Figure 17 - Authentication .. 83

Figure 18 - Protocol CreateVote ... 87

Figure 19 - Protocol ProcessVote .. 91

Figure 20 - Protocol CreateCC ... 94

Figure 21 - Protocol CreateRC ... 97

Figure 22 - Protocol Confirm .. 99

Figure 23 - Protocol ProcessConfirm ... 100

Figure 24 - Counting phase overview ... 106

Scytl sVote

Protocol Specifications

8

List of tables

Table 1 - Mapping between components in the protocol and in the VEleS Swiss regulation 17

Table 2 - System keys notation ... 25

Table 3 - Variables notation... 35

Table 4 - Voter Identifiers .. 35

Table 5 - Election Identifiers .. 35

Table 6 - Codes notation ... 36

Table 7 - Election CA keys notation .. 37

Table 8 - Election keys notation .. 45

Table 9- Authentication Voter Data ... 49

Table 10 - Authentication Context Data .. 50

Table 11 - Election Information Context Data ... 50

Table 12 - Voting Workflow Context Data ... 50

Table 13 - Ballot .. 54

Table 14 - Ballot Box Information .. 56

Table 15 - Ballot Box Context Data ... 56

Table 16 - Ballot Box Voter Data ... 56

Table 17 - Electoral Authority Data ... 58

Table 18 - Election Key Data ... 59

Table 19 - Keys and identifiers generated by the SDM during the Setup algorithm 61

Table 20 - Keys and identifiers generated by the 𝑪𝑪𝑹𝒋 during the Setup algorithm 62

Table 21 - Credential Data .. 65

Table 22 - Verification Card Data .. 67

Table 23 - Verification Card Codes ... 74

Table 24 - Verification Card Set Control Component Data ... 75

Table 25 - Verification Card Set Data .. 76

Table 26 - Codes Mapping Table Context Data .. 76

Table 27 - Vote Verification Context Data ... 76

Table 28 - Voter Information .. 77

Table 29 - Extended Authentication Data ... 77

Table 30 - Ballot Box ... 119

Scytl sVote

Protocol Specifications

9

1 Introduction

This document gives a detailed description of the cryptographic protocol implemented in Scytl sVote.

The protocol provides end-to-end encryption, vote secrecy and both individual and universal

verifiability to the product.

• Individual verifiability is accomplished by sending to the voter a Choice Return Code for each

possible voting option the voter has selected during the voting process. These Choice Return

Codes are calculated and returned to the voter by the voting server using the encrypted vote

sent by the voter and without decrypting the vote. If the voter agrees with the Choice Return

Codes1 (with the assistance of a voting card), sends a ballot confirmation key (Ballot Casting

Key). The server verifies the Ballot Casting Key an if it is correct, calculates the corresponding

Vote Cast Return Code that confirm to the voter that the confirmed vote is included in the Ballot

Box.

• Universal verifiability is achieved using a set of independent components named Control

Components. The use of these independent components to achieve universal verifiability is a

specific proposal made by the Swiss Federal Chancellery in the Electronic Voting Ordinance

(VEleS) [1] [2].

This approach is based on a trust model in which the privacy and auditability of the election is not based

on the trustworthiness of the voting client or voting servers components, but on the trustworthiness of

at least one control component within a group of control components.

Furthermore, the individual verifiable proof should also allow voters to ensure that the universal

verifiability mechanism considers their votes (e.g., the Choice Return Codes should be generated by

Control Components).

The document describes a voting system in which voters can choose among pre-defined options. In

case the voter cast a vote with a write-in, the individual verification process only confirms the presence

of a write-in in the vote, but it does not prove the write-in value. The rest of the protocol properties are

preserved in this case.

1.1 Document organization

This document is organized as follows:

• Section 1: Introduction. This section is a short introduction to the protocol and the trust model.

• Section 2: Solution overview. This section is a summary of the general solution with all the

involved components.

1 In some parts of the sVote code, this concept might be referred to as “Return Code” instead of “Choice Return

Code

Scytl sVote

Protocol Specifications

10

• Section 3: System configuration process. This section also defines the system certificate

hierarchy and outlines the steps required for certificates generation. These are the certificates

used by the voting system that are shared among different election events.

• Section 4: Election configuration process. This section defines the data, keys and

credentials that are specific for each election and how they are generated. It includes the

generation of the keys relevant for the individual verification functionality of the protocol, and

the keys relevant for the complete verification functionality. At the beginning of this section,

there are some tables that summarize the notation regarding keys and variables introduced

throughout the section and used along the document.

• Section 5: Voting phase. This section explains the different steps of the voting phase:

(authentication, send a vote and confirm a vote) and the algorithms involved in them.

• Section 6: Counting phase. This section describes all the activities performed during the

counting process (Cleansing, Mixing and Decryption) with special focus on the Ballot Box export

process.

• Section 7: Audit phase. This section specifies how to audit the election process.

• Section 8: References. This section specifies the literature used as a reference throughout the

document.

• Section 9: Appendix. This section details the pre-computations that can be done both in the

voting client and during configuration to reduce the time needed to cast a vote. It also describes

all the cryptographic primitives used by the voting protocol. Throughout the document these

primitives are referenced when needed.

Scytl sVote

Protocol Specifications

11

2 Solution overview

The following diagram is an overview of the components involved in the voting system and the

communication channels established between them:

Figure 1 - Overview of the voting system components and communication channels

Each of these components is defined as follows:

• Voter: Is the user of the system. Prior to the election, the voter receives a Voting Card with the

keys and codes to vote and verify his/her vote.

• Voting Client: This is the device used by the voter to cast his/her vote. This component is also

named as Client Context in the protocol description.

• Voting Server: It authenticates the voter and receives, processes and stores in the Ballot Box

the votes cast by the voter. From an architectural point of view, the voting server is implemented

using different contexts. Each one of these contexts is in charge of executing a different part of

the protocol:

o Voting Workflow Context: Receives and manages client requests, contains the possible

workflows per different Election Events and stores the status of the vote.

o Extended Authentication Context: Participates in the first steps of the authentication

process in case the system requires additional authentication values to start voting.

o Authentication Context: Authenticates the voter in the system and performs

authentication token validation.

Scytl sVote

Protocol Specifications

12

o Election Information Context: Stores the election information and the whole Ballot Box

and performs vote and confirmation validations.

o Vote Verification Context: Performs vote validations, stores the Choice Return Codes

and the Vote Cast Return Code and retrieves them when requested.

o Voter Material Context: Stores voter related materials.

The Voting Server also hosts the following election configuration and management modules for

the Election administrators not accessible to voters:

o Administration Portal performs non-cryptographic operations (configure the ballot,

define the Electoral Board members, etc.) and is used to introduce the election

configuration information such as the election name, election calendar, candidates,

electoral roll, etc.

o Election Configuration Services interact with the Administration Portal, the Print Office

domain and the Control Components domain during the configuration phase. They

provide election information to all the components of the different domains and facilitate

the communication between the Print Office and the Control Components domains for

generating the election cryptographic-related information. The Election Configuration

Services use the Secure Data Manager (SDM online) software component to implement

the above-mentioned functionalities.

• Control Components (CC): According to the VEleS annex [2], they can be implemented as:

o A group of people: People are considered only for protecting voter privacy during the

vote decryption process. In this case, it is possible to set up a group of at least 4 people

for keeping in smartcards the shares of the secret key.

o Standard computers: At least 4 computers with different Operating Systems to ensure

that they do not share a common threat.

o Hardware Security Modules: At least 2 HSM2 from different vendors with Common

Criteria Evaluation Assurance level 4 (CC EAL4) or the level 3 certification of the

Federal Information Processing Standard (FIPS) Publication 140-2. Control

Components can be combined in one or more groups. All the Control Components in a

group should collaborate to perform their assigned voting protocol function and any

attempt to abuse the system should always be detected if at least one component of

the group is honest.

2 A hardware security module (HSM) is a physical computing device that safeguards and manages digital

keys for strong authentication and provides crypto processing.

Scytl sVote

Protocol Specifications

13

The approach presented in this document considers standard computers and distinguishes

between two types of Control Components:

o Choice Return Codes Control Components (CCR): They implement the generation of

the Choice Return Codes and the Vote Cast Return Code but using a distributed

approach. These components work in parallel and the results of their cryptographic

operations are combined to obtain the final Choice Return Codes and Vote Cast Return

Code.

o Mixing Control Components (CCM): These Control Components implement the

shuffling and decryption of the votes during the counting process and are also involved

in the generation of the election key. By design, a mixing can be implemented using

several Mix-nodes to shuffle and transform (re-encrypt) the votes in sequence, the

approach is based on implementing these mix-nodes using 4 Control Components.

With the aim of distributing the decryption process across them, each mix-node

performs a partial decryption in addition to shuffle and re-encryption. Additionally, the

last mix-node (𝐶𝐶𝑀4) decrypts the votes after mixing using an Electoral Board key

reconstructed using a secret sharing scheme. Only the first three nodes (𝐶𝐶𝑀1, 𝐶𝐶𝑀2,

𝐶𝐶𝑀3) partially decrypt the votes using its own partial decryption key that does not need

to be reconstructed.

The last Mixing node (𝐶𝐶𝑀4) also needs to interact with the Key Reconstruction module to

reconstruct the Election Administrators keys that allow partial decryption and digitally signing of

the information managed by this Control Component:

o Key Reconstruction reconstructs the election keys required for protecting the integrity

of the election information (Administration Board key) and the privacy of the votes

(Electoral Authority key). The reconstruction is done from the shares provided by the

members of the Board that custodies the keys. This module uses the software

component called offline Secure Data Manager for performing the secret sharing

scheme that reconstructs the key.

• Print Office: It is responsible for generating, printing and delivering the voting cards to the

voters as well as for generating the required election keys. The generation is done in physically

isolated infrastructure by the following modules.

o Voting Card Generation is used to generate the voter’s credentials (Voting Cards)

interacting indirectly (through the Voting Server) with the Control Components.

o Election Keys Generation generates the election keys required for protecting the

integrity of the election configuration information (Administration Board key), the privacy

of the votes (Electoral Board Authority key) and the integrity of the information

generated and used during the voting phase (Authentication Token, Receipt, etc). The

Scytl sVote

Protocol Specifications

14

Administration Board key and the Electoral Board Authority key are generated using a

secret sharing scheme.

Both modules use the software component called offline Secure Data Manager (SDM).

• Election Administrators: They are responsible for generating the election configuration,

verifying it, computing the results and publishing them. We distinguish between:

o Administration Portal role that performs non-cryptographic operations (configure the

ballot, define the Electoral Board members, etc.)

o Administration Board Authority that uses the offline SDM from the Election Keys

Generation module in the Print Office component, generates all the cryptographic

information to ensure the integrity and security of the voting process. The Administration

Board is also used from the Key Reconstruction by the last Control Component. This

authority owns a digital signature key pair whose private key is shared among the Board

members and is used to sign both the configuration and the results of the last Control

Component execution.

o Electoral Board Authority using the Election Keys Generation module in the Print Office

component, generates all the cryptographic information to privacy of the voting process

(i.e., the election keys). This entity owns a key pair whose private key is shared among

the Board members and is used to partially decrypt the votes in the last Control

Component execution.

• Global Bulletin Board (Audit System): It is the global repository used to store all the audit

information from the different modules that will be required to verify the election process. It

stores election configuration, votes, confirmations and keeps track of all the actions performed

by each entity. The Bulletin Board is implemented as a distributed system, meaning that the

information stored in it comes from different sources (local Bulletin Board) and repositories

o The Ballot Box where the encrypted votes and their proofs are stored. Voting Server

and Control Components are keeping a local Ballot Box of all the votes that are

processed by the solution.

o The Secure Logger that registers all the actions that takes place in each entity by

producing immutable logs that are protected by means of cryptographic mechanisms,

ensuring that nobody can manipulate the entries stored in the log without being

detected. The information stored in the log could be used to recognize any

inconsistency in the votes cast and recorded in the Ballot Box. All the components of

the solution have a Secure Logger of the transactions.

o The folder structure (named offline Secure Data Manager) created after the execution

of the Voting Card Generation and Election Keys Generation modules in the Print Office

component, where all the election configuration is stored signed by the Administration

Scytl sVote

Protocol Specifications

15

Board. The initial folder structure and contents are provided by the Administration Portal

and Election Configuration Services modules of the Voting Server. The Print Office

completes the contents of this folder with the generated election keys, and digitally signs

it.

• Verifier: It is the component used to verify the correctness of the entire election process, the

integrity of the data processed through different voting system components, and that these

processes are accurate and fair. Using the information stored in the global Bulletin Board, the

Verifier:

o Ensures that the configuration sealed (digitally signed) by the Print Office using the

Voting Card Generation and the Election Keys Generation, is the configuration used

during the voting phase and that has not been altered after it has been signed.

o Ensures that the behaviour of each component is the expected one.

o Ensures that all the encrypted votes present in the Ballot Box correspond to the

encrypted votes cast by legitimate voters during the voting phase.

o Ensures that all the encrypted votes present in the Ballot Box correspond to votes that

have been validated by the voters and processed by the Control Components.

o Ensures that no votes processed by the Control Components have been deleted from

Ballot Box.

o Ensures that all the content of the valid encrypted votes that are present in the Ballot

Box at the end of the voting phase are part of the tally.

It is also important that all these verification processes are carried out without compromising the

privacy of any voter. The details of the verifier are available in [3].

The Secure Data Manager (SDM) has been mentioned several times in the modules description, but it

must not be identified as an architectural module of the voting system protocol. The SDM is a software

component that provides the required cryptographic protocol operations to the modules. Therefore, it is

not a standalone module that receives calls from other modules, but a software component

implementing the cryptographic parts of the protocol used for election configuration set-up and secret-

sharing key management.

When the SDM is called inside a module deployed in an isolated environment (e.g., Voting Card

Generation), it is taken that it uses the SDM offline functionalities. Otherwise, it is considered that the

module calls the SDM online functionalities that facilitates the communication with modules that are

calling the SDM offline.

Scytl sVote

Protocol Specifications

16

Figure 2 - Detailed view of the voting system modules and their interactions

As shown in Figure 2, the modules previously defined, interact during the voting protocol and assume

the following phases:

• Configuration: This phase takes care of those activities related to the system and election

configuration and provides all the data that will be required by other modules during the election,

including codes, certificates, keys and passwords. The codes the voter will use when voting

(Start Voting Key, Ballot Casting Key, Vote Cast Return Code and Choice Return Codes for

each voting option) need to be sent to each voter before the election starts. The components

involved in this phase are the Print Office, the Voting Server, the Control Components and the

Election Administration.

• Voting: During the voting phase, voters access the voting application using their credentials,

then they are presented with their ballot, select their option (s) and cast their vote. This phase

needs the interaction between the voter, the Voting Client, the Voting Server and the Control

Components.

• Counting: It comprises the modules for Cleansing, Mixing and Decryption of votes. The tallying

is not considered as part of the solution and it is expected to be performed by the authorities.

o Cleansing: Its main task is to validate votes in the Ballot Box before Mixing. Confirmed

votes are kept in a cleansed Ballot Box without any reference to the voter (no Voting

Card ID (𝑣𝑐𝑑𝑖𝑑) and no signature) so they cannot be traced back when decrypted. This

Scytl sVote

Protocol Specifications

17

process is done by the Voting Server and can be repeated by the auditors during the

verification phase.

o Mixing and Decryption: These processes are executed sequentially in each Control

Component. The mixing process performs a shuffle and re-encryption on the votes to

break the link between the votes as they were stored in the Ballot Box (which can be

traced to the Voting Card IDs) and the votes to be decrypted. The decryption computed

by the Control Components is indeed a partial decryption since the votes are not fully

decrypted unless all the Control Components participate in the process. The three first

Control Components 𝐶𝐶𝑀1 , 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 partially decrypt their votes using their

own 𝐶𝐶𝑀𝑗 Mixing private key (𝑥𝑗). However, the last partial decryption performed in

𝐶𝐶𝑀4 uses the reconstructed Electoral Board private key (𝐸𝐵𝑠𝑘). In this last Control

Component 𝐶𝐶𝑀4the Administration Board key is also reconstructed to sign its outputs.

2.1 Mapping solution to VEleS Swiss regulation

Protocol VEleS Swiss regulation Trust assumption

Voters Voters Significant proportion of voters are non-

trustworthy

Voting Client User platform Untrustworthy for individual and complete

verifiability, trustworthy for privacy

Voting Card Trusted technical aids for

voters

Trustworthy

Voting Server System (server-side) Untrustworthy

Print Office (offline

SDM)

Print Office Trustworthy

Return Codes Control

Components (CCRs)

and Mixing Control

Components (CCMs)

Control Components Trustworthy only as the whole. At least one

is honest.

Auditors Auditors At least one is trustworthy

Verifier Auditor’s technical aid At least one honest auditor has a

trustworthy aid

Table 1 - Mapping between components in the protocol and in the VEleS Swiss regulation

Table 1 maps the solution modules with those in the VEleS Swiss regulation. This table also shows the

trust assumptions defined by the VEleS regulation that must be ensured by the equivalent module in

the proposed voting system. These trust assumptions are considered in the design of the voting system

Scytl sVote

Protocol Specifications

18

and components, which are trustworthy and designed to be deployed in isolated environments (e.g.,

using the SDM offline functionalities).

3 System configuration process

During the system configuration process, all the information unrelated to a specific Election Event will

be created. The following schema defines the certificate hierarchy of the system configuration.

Figure 3 - System certificate hierarchy

First, a Platform Root CA is created. This Platform Root generates all the Tenant Certificates for those

Tenants that want to run an election and issues the Tenant CA Certificate.

For each Tenant and each Context of the electronic voting system, the following certificates are

generated:

• System certificates

• Logging signing certificates

• Logging encryption certificates

The system key pair is used to encrypt/decrypt the election KeyStore passwords for each context.

The logging signing and encryption key pairs are needed to run the Secure Logs application.

Once a Tenant is registered, it can certify Administration Boards which can digitally sign valid

configurations and election results.

Scytl sVote

Protocol Specifications

19

The first approach is to generate all the Tenant and Platform configuration information using two

command line tools known as Customer Administrator Tools (CATs). These tools allow the creation of

credentials for platforms and tenants, as well as the system credentials for an election. Additionally, the

CATs allow installing the configuration on the services that will need it to run an election.

In addition, the Platform Root also issues certificates for the Control Components. For each one of them

(𝐶𝐶𝑅1, 𝐶𝐶𝑅2, 𝐶𝐶𝑅3, 𝐶𝐶𝑅4, 𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3) it generates a Control Component CA that issues the

following certificates:

• Encryption certificate

• Logging signing certificate

• Logging encryption certificate

The encryption key pair is used to encrypt/decrypt the passwords of the KeyStores that contain the

election private keys, and the logging signing and encryption key pairs needed to run the SecureLog

application.

Note: These keys are unique per Control Component (CC) but shared among all Tenants certified by

the Platform Root.

Key Variable Owner Meaning

Platform Root CA

private key

𝑃𝑅𝐶𝐴𝑠𝑘 Platform This RSA private key is used to issue the

Tenant CA, the Control Component 𝐶𝐶𝑅𝑗

CAs, the Control Component 𝐶𝐶𝑀𝑗 CAs, the

𝐶𝐶𝑅𝑗 Logging encryption, the 𝐶𝐶𝑅𝑗 Logging

signing, the 𝐶𝐶𝑀𝑗 Logging encryption, the

𝐶𝐶𝑀𝑗 Logging signing, the 𝐶𝐶𝑅𝑗 encryption,

the 𝐶𝐶𝑀𝑗 encryption, the Tenant Context

System, the Context Logging Encryption and

the Context Logging Signing certificates.

Platform Root CA

public key

𝑃𝑅𝐶𝐴𝑝𝑘 Platform This RSA public key is used to verify the

Tenant CA, the Control Component 𝐶𝐶𝑅𝑗

CAs, the Control Component 𝐶𝐶𝑀𝑗 CAs, the

𝐶𝐶𝑅𝑗 Logging encryption, the 𝐶𝐶𝑅𝑗 Logging

signing, the 𝐶𝐶𝑀𝑗 Logging encryption, the

𝐶𝐶𝑀𝑗 Logging signing, the 𝐶𝐶𝑅𝑗 encryption,

the 𝐶𝐶𝑀𝑗 encryption, the Tenant Context

System, the Context Logging Encryption and

the Context Logging Signing certificates.

Scytl sVote

Protocol Specifications

20

Key Variable Owner Meaning

Tenant CA private

key

𝑇𝐶𝐴𝑠𝑘 Tenant This RSA private key is used to issue the

Administration Board certificate.

Tenant CA public

key

𝑇𝐶𝐴𝑝𝑘 Tenant This RSA public key is used to validate the

Administration Board certificate.

𝑪𝑪𝑹𝒋 CA private

key

𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗

 𝐶𝐶𝑅𝑗 This RSA private key is used to issue the

𝐶𝐶𝑅𝑗 signing certificate.

𝑪𝑪𝑹𝒋 CA public

key

𝐶𝐶𝑅𝐶𝐴𝑝𝑘
𝑗

 𝐶𝐶𝑅𝑗 This RSA public key is used to validate the

𝐶𝐶𝑅𝑗 signing certificate.

𝑪𝑪𝑹𝒋 Logging

Encryption private

key

𝐶𝐶𝑅𝑙𝑜𝑔𝑠𝑘
𝑗,𝑒

𝐶𝐶𝑅𝑗 This RSA private key is used to decrypt the

symmetric keys that are used to compute the

𝐶𝐶𝑅𝑗 Secure Log checkpoints.

𝑪𝑪𝑹𝒋 Logging

Encryption public

key

𝐶𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑗,𝑒

𝐶𝐶𝑅𝑗 This RSA public key is used to encrypt the

symmetric keys that are used to compute the

𝐶𝐶𝑅𝑗 Secure Log checkpoints.

𝑪𝑪𝑹𝒋 Logging

Signing private

key

𝐶𝐶𝑅𝑙𝑜𝑔𝑠𝑘
𝑗,𝑠

𝐶𝐶𝑅𝑗 This RSA private key is used to sign the 𝐶𝐶𝑅𝑗

Secure Logs checkpoints.

𝑪𝑪𝑹𝒋 Logging

Signing public key

𝐶𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑗,𝑠

𝐶𝐶𝑅𝑗 This RSA public key is used to verify the 𝐶𝐶𝑅𝑗

Secure Logs checkpoints signatures.

𝑪𝑪𝑹𝒋 Encryption

private key

𝐶𝐶𝑅𝑒𝑠𝑘
𝑗

𝐶𝐶𝑅𝑗 This RSA private key is used to decrypt the

𝐶𝐶𝑅𝑗 Choice Return Code encryption private

key (𝑠𝑘𝐶𝐶𝑅𝑗), the 𝐶𝐶𝑅𝑗 Choice Return Code

generation private key (𝑘𝑗
′) and the 𝐶𝐶𝑅𝑗

signing private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

𝑪𝑪𝑹𝒋 Encryption

public key

𝐶𝐶𝑅𝑒𝑝𝑘
𝑗

𝐶𝐶𝑅𝑗 This RSA public key is used to encrypt the

𝐶𝐶𝑅𝑗 Choice Return Code encryption private

key (𝑠𝑘𝐶𝐶𝑅𝑗), the 𝐶𝐶𝑅𝑗 Choice Return Code

generation private key (𝑘𝑗
′) and the 𝐶𝐶𝑅𝑗

signing private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

𝑪𝑪𝑴𝒋 CA private

key

𝐶𝐶𝑀𝐶𝐴𝑠𝑘
𝑗

 𝐶𝐶𝑀𝑗 This RSA private key is used to issue the

𝐶𝐶𝑀𝑗 signing certificate.

𝑪𝑪𝑴𝒋 CA public

key

𝐶𝐶𝑀𝐶𝐴𝑝𝑘
𝑗

 𝐶𝐶𝑀𝑗 This RSA public key is used to validate the

𝐶𝐶𝑀𝑗 signing certificate.

Scytl sVote

Protocol Specifications

21

Key Variable Owner Meaning

𝑪𝑪𝑴𝒋 Logging

Encryption private

key

𝐶𝐶𝑀𝑙𝑜𝑔𝑠𝑘
𝑗,𝑒

𝐶𝐶𝑀𝑗 This RSA private key is used to decrypt the

symmetric keys that are used to compute the

𝐶𝐶𝑀𝑗 Secure Log checkpoints.

𝑪𝑪𝑴𝒋 Logging

Encryption public

key

𝐶𝐶𝑀𝑙𝑜𝑔𝑝𝑘
𝑗,𝑒

𝐶𝐶𝑀𝑗 This RSA public key is used to encrypt the

symmetric keys that are used to compute the

𝐶𝐶𝑀𝑗 Secure Log checkpoints.

𝑪𝑪𝑴𝒋 Logging

Signing private

key

𝐶𝐶𝑀𝑙𝑜𝑔𝑠𝑘
𝑗,𝑠

𝐶𝐶𝑀𝑗 This RSA private key is used to sign the 𝐶𝐶𝑀𝑗

Secure Logs checkpoints.

𝑪𝑪𝑴𝒋 Logging

Signing public key

𝐶𝐶𝑀𝑙𝑜𝑔𝑝𝑘
𝑗,𝑠

𝐶𝐶𝑀𝑗 This RSA public key is used to verify the

𝐶𝐶𝑀𝑗 Secure Logs checkpoints signatures.

𝑪𝑪𝑴𝒋 Encryption

private key

𝐶𝐶𝑀𝑒𝑠𝑘
𝑗

𝐶𝐶𝑀𝑗 This RSA private key is used to decrypt the

𝐶𝐶𝑀𝑗 Mixing private key (𝑥𝑗) and the 𝐶𝐶𝑀𝑗

signing private key (𝑠𝑘𝐶𝐶𝑀𝑗
𝑠).

𝑪𝑪𝑴𝒋 Encryption

public key

𝐶𝐶𝑀𝑒𝑝𝑘
𝑗

𝐶𝐶𝑀𝑗 This RSA public key is used to encrypt the

𝐶𝐶𝑀𝑗 Mixing private key (𝑥𝑗) and the 𝐶𝐶𝑀𝑗

signing private key (𝑠𝑘𝐶𝐶𝑀𝑗
𝑠).

Administration

Board private key

𝐴𝐵𝑠𝑘 Administration

Board

This RSA private key is used to sign the

election configuration and the counting

results.

Administration

Board public key

𝐴𝐵𝑝𝑘 Administration

Board

This RSA public key is used validate the

election configuration signatures and the

counting results signature.

Tenant

Authentication

Context System

private key

𝑇𝐴𝐶𝑠𝑘 Authentication

Context

This RSA private key is used to decrypt the

Authentication Token Signer Password.

Tenant

Authentication

Context System

public key

𝑇𝐴𝐶𝑝𝑘 Authentication

Context

This RSA public key is used to encrypt the

Authentication Token Signer Password.

Tenant Vote

Verification

Context System

private key

𝑇𝑉𝑉𝑠𝑘 Vote

Verification

Context

This RSA private key is used to decrypt the

Choice Return Codes Encryption KeyStore

password and the Codes Secret key

KeyStore password.

Scytl sVote

Protocol Specifications

22

Key Variable Owner Meaning

Tenant Vote

Verification

Context System

public key

𝑇𝑉𝑉𝑝𝑘 Vote

Verification

Context

This RSA public key is used to decrypt the

Choice Return Codes Encryption KeyStore

password and the Codes Secret key

KeyStore password.

Tenant Election

Information

Context System

private key

𝑇𝐸𝐼𝑠𝑘 Election

Information

Context

This RSA private key is used to decrypt the

Ballot Box KeyStore password and the

Election Information Signing KeyStore

password.

Tenant Election

Information

Context System

public key

𝑇𝐸𝐼𝑝𝑘 Election

Information

Context

This RSA public key is used to encrypt the

Ballot Box KeyStore password and the

Election Information Signing KeyStore

password.

Authentication

Context Logging

Encryption private

key

𝐴𝐶𝑙𝑜𝑔𝑠𝑘
𝑒 Authentication

Context

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Authentication Context Secure Log

checkpoints.

Authentication

Context Logging

Encryption public

key

𝐴𝐶𝑙𝑜𝑔𝑝𝑘
𝑒 Authentication

Context

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Authentication Context Secure Log

checkpoints.

Authentication

Context Logging

Signing private

key

𝐴𝐶𝑙𝑜𝑔𝑠𝑘
𝑠 Authentication

Context

This RSA private key is used to sign the

Authentication Context Secure Logs

checkpoints.

Authentication

Context Logging

Signing public key

𝐴𝐶𝑙𝑜𝑔𝑝𝑘
𝑠 Authentication

Context

This RSA public key is used to verify the

Authentication Context Context Secure Logs

checkpoints signatures.

Voting Workflow

Context Logging

Encryption private

key

𝑉𝑊𝑙𝑜𝑔𝑠𝑘
𝑒 Voting

Workflow

Context

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Voting Workflow Context Secure Log

checkpoints.

Voting Workflow

Context Logging

Encryption public

key

𝑉𝑊𝑙𝑜𝑔𝑝𝑘
𝑒 Voting

Workflow

Context

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Voting Workflow Context Secure Log

checkpoints.

Scytl sVote

Protocol Specifications

23

Key Variable Owner Meaning

Voting Workflow

Context Logging

Signing private

key

𝑉𝑊𝑙𝑜𝑔𝑠𝑘
𝑠 Voting

Workflow

Context

This RSA private key is used to sign the

Voting Workflow Context Secure Logs

checkpoints.

Voting Workflow

Context Logging

Signing public key

𝑉𝑊𝑙𝑜𝑔𝑝𝑘
𝑠 Voting

Workflow

Context

This RSA public key is used to verify the

Voting Workflow Context Secure Logs

checkpoints signatures.

Vote Verification

Context Logging

Encryption private

key

𝑉𝑉𝑙𝑜𝑔𝑠𝑘
𝑒 Vote

Verification

Context

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Vote Verification Context Secure Log

checkpoints.

Vote Verification

Context Logging

Encryption public

key

𝑉𝑉𝑙𝑜𝑔𝑝𝑘
𝑒 Vote

Verification

Context

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Vote Verification Context Secure Log

checkpoints.

Vote Verification

Context Logging

Signing private

key

𝑉𝑉𝑙𝑜𝑔𝑠𝑘
𝑠 Vote

Verification

Context

This RSA private key is used to sign the Vote

Verification Context Secure Logs

checkpoints.

Vote Verification

Context Logging

Signing public key

𝑉𝑉𝑙𝑜𝑔𝑝𝑘
𝑠 Vote

Verification

Context

This RSA public key is used to verify the Vote

Verification Context Secure Logs checkpoints

signatures.

Voter Material

Context Logging

Encryption private

key

𝑉𝑀𝑙𝑜𝑔𝑠𝑘
𝑒 Vote Material

Context

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Voter Material Context Secure Log

checkpoints.

Voter Material

Context Logging

Encryption public

key

𝑉𝑀𝑙𝑜𝑔𝑝𝑘
𝑒 Vote Material

Context

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Voter Material Context Secure Log

checkpoints.

Voter Material

Context Logging

Signing private

key

𝑉𝑀𝑙𝑜𝑔𝑠𝑘
𝑠 Vote Material

Context

This RSA private key is used to sign the Voter

Material Context Secure Logs checkpoints.

Voter Material

Context Logging

Signing public key

𝑉𝑀𝑙𝑜𝑔𝑝𝑘
𝑠 Vote Material

Context

This RSA public key is used to verify the

Voter Material Context Secure Logs

checkpoints signatures.

Scytl sVote

Protocol Specifications

24

Key Variable Owner Meaning

Election

Information

Context Logging

Encryption private

key

𝐸𝐼𝑙𝑜𝑔𝑠𝑘
𝑒 Election

Information

Context

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Election Information Context Secure Log

checkpoints.

Election

Information

Context Logging

Encryption public

key

𝐸𝐼𝑙𝑜𝑔𝑝𝑘
𝑒 Election

Information

Context

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Election Information Context Secure Log

checkpoints.

Election

Information

Context Logging

Signing private

key

𝐸𝐼𝑙𝑜𝑔𝑠𝑘
𝑠 Election

Information

Context

This RSA private key is used to sign the

Election Information Context Secure Logs

checkpoints.

Election

Information

Context Logging

Signing public key

𝐸𝐼𝑙𝑜𝑔𝑝𝑘
𝑠 Election

Information

Context

This RSA public key is used to verify the

Election Information Context Secure Logs

checkpoints signatures.

Certificate

Registry Context

Logging

Encryption private

key

𝐶𝑅𝑙𝑜𝑔𝑠𝑘
𝑒 Certificate

Registry

This RSA private key is used to decrypt the

symmetric keys that are used to compute the

Certificate Registry Secure Log checkpoints.

Certificate

Registry Context

Logging

Encryption public

key

𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑒 Certificate

Registry

This RSA public key is used to encrypt the

symmetric keys that are used to compute the

Certificate Registry Secure Log checkpoints.

Certificate

Registry Context

Logging Signing

private key

𝐶𝑅𝑙𝑜𝑔𝑠𝑘
𝑠 Certificate

Registry

This RSA private key is used to sign the

Certificate Registry Secure Logs checkpoints.

Certificate

Registry Context

Logging Signing

public key

𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑠 Certificate

Registry

This RSA public key is used to verify the

Certificate Registry Secure Logs checkpoints

signatures.

Scytl sVote

Protocol Specifications

25

Key Variable Owner Meaning

Election

Information

Signing private

key

𝐸𝐼𝑠𝑘
𝑠 Election

Information

Context

This RSA private key is used to sign the

cleansed ballot box (the input of the first

mixing Control Component).

Election

Information

Signing public key

𝐸𝐼𝑝𝑘
𝑠 Election

Information

Context

This RSA public key is used to verify the

signature of the cleansed ballot box (the input

of the first mixing Control Component).

Table 2 - System keys notation

3.1 Platform Root constitution and registration

Figure 4 - Platform Root constitution and registration

The Platform Command Line Tool is used to generate the Platform Root Credentials.

• Call the RSA Key pair generation primitive and obtain the Platform Root key pair.

• The Platform user is asked to introduce a KeyStore password.

• Call the X509 certificate generation primitive to generate the Platform Root certificate, self-

signed with the private RSA key. The certificate contains the CA name, the validity period and

the certificate name field values.

• The private RSA key is stored into a KeyStore and seal it with the password.

The Platform Root certificate is uploaded to the Certificate Registry and to the contexts. The KeyStore

password is kept by the Platform user to be used to issue tenant and system certificates.

Scytl sVote

Protocol Specifications

26

3.2 Tenant constitution and registration

Figure 5 - Tenant constitution and registration

3.2.1 Tenant constitution

The Tenant Command Line Tool is used by the Tenant user to generate their credentials:

• Call the RSA Key pair generation primitive and obtain the Tenant key pair

• The Tenant user is asked to introduce a KeyStore password.

• A CSR with the public key is generated and sent to the Platform Root (for instance, by

authenticate mail). The CSR contains the tenant identifier in the common name. The validity

period should be configurable.

• The private RSA key is stored into a KeyStore and seal it with the password.

• The KeyStore and password are kept by the Tenant locally.

3.2.2 Tenant registration

Precondition: The platform host has a CA key pair, constituted by a KeyStore containing the private

key, and a self-signed certificate (containing the public key), which has been installed in the contexts.

The platform host registers the Tenant by issuing the X.509 for the Tenant CA, from the CSR created

in the previous step.

• The Command Line Tool requires entering the Platform Root KeyStore password to retrieve the

Platform Root private signing key.

• The Platform Host CA calls the X509 certificate generation primitive to generate the Tenant CA

X509 certificate from the existing CSR and using the Platform Host CA private key.

Scytl sVote

Protocol Specifications

27

• The Tenant CA certificate is uploaded only to the Certificate Registry. The registry checks that

the Tenant CA certificate has been issued by the Platform Host CA.

When the contexts need the Tenant Authorities CA Certificate, they request it from the Certificate

Registry.

3.3 System context credentials

Precondition: The platform host has a CA key pair, constituted by a KeyStore containing the private

key and a certificate, which has been installed in the contexts.

Figure 6 - System Context credentials generation

3.3.1 Logging Context Keys

The platform host generates two key pairs for each context to start logging information in a secure way.

One key pair will be used to encrypt and the other to sign.

• Call twice to the RSA Key pair generation primitive and obtain the Logging Context key pairs

o Authentication Context: (𝐴𝐶𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝐴𝐶𝑙𝑜𝑔𝑠𝑘

𝑒), (𝐴𝐶𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝐴𝐶𝑙𝑜𝑔𝑠𝑘

𝑠)

o Voting Workflow Context: (𝑉𝑊𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝑉𝑊𝑙𝑜𝑔𝑠𝑘

𝑒), (𝑉𝑊𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝑉𝑊𝑙𝑜𝑔𝑠𝑘

𝑠)

o Voter Material Context: (𝑉𝑀𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝑉𝑀𝑙𝑜𝑔𝑠𝑘

𝑒), (𝑉𝑀𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝑉𝑀𝑙𝑜𝑔𝑠𝑘

𝑠)

o Election Information Context: (𝐸𝐼𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝐸𝐼𝑙𝑜𝑔𝑠𝑘

𝑒), (𝐸𝐼𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝐸𝐼𝑙𝑜𝑔𝑠𝑘

𝑠)

Scytl sVote

Protocol Specifications

28

o Vote Verification Context: (𝑉𝑉𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝑉𝑉𝑙𝑜𝑔𝑠𝑘

𝑒), (𝑉𝑉𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝑉𝑉𝑙𝑜𝑔𝑠𝑘

𝑠)

o Certificate Registry: (𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑒 , 𝐶𝑅𝑙𝑜𝑔𝑠𝑘

𝑒), (𝐶𝑅𝑙𝑜𝑔𝑝𝑘
𝑠 , 𝐶𝑅𝑙𝑜𝑔𝑠𝑘

𝑠)

• The Command Line Tool requires entering the Platform Root KeyStore password to retrieve the

Platform Root private signing key (𝑃𝑅𝐶𝐴𝑠𝑘).

• Call twice to the X509 certificate generation primitive with the Platform Root CA private key

(𝑃𝑅𝐶𝐴𝑠𝑘) to Logging Context Signing and Encryption X509 certificates. The certificates should

contain in the “common name”, the name of the context for which they are issued. This is the

list of contexts:

o Authentication Context

o Election Information Context

o Vote Verification Context

o Voting Workflow Context

o Voter Material Context

o Certificate Registry

• The Context Logging signing/encryption certificates and KeyStores are uploaded to the

respective contexts.

• The Context Logging signing/encryption KeyStore passwords are kept by the user and never

stored on disk.

• Each context verifies that the certificates have been issued by the Platform Host CA

3.3.2 Context System Keys

The platform host generates the Tenant Contexts System key pairs, passwords and KeyStores:

• Call the RSA Key pair generation primitive and obtain the Tenant Context System key pair:

(𝑇𝐴𝐶𝑝𝑘, 𝑇𝐴𝐶𝑠𝑘), (𝑇𝑉𝑉𝑝𝑘, 𝑇𝑉𝑉𝑠𝑘), (𝑇𝐸𝐼𝑝𝑘, 𝑇𝐸𝐼𝑠𝑘).

• The Command Line Tool requires entering the platform root KeyStore password to retrieve the

Platform Root CA private key (𝑃𝑅𝐶𝐴𝑠𝑘).

• Call the X509 certificate generation primitive with the Platform Root CA private key (𝑃𝑅𝐶𝐴𝑠𝑘) to

generate the Tenant Context System X509 Certificates. Certificates and KeyStores are

uploaded to the respective context.

• The Tenant System Context KeyStore passwords are kept by the user and never stored on disk

The system keys are used to encrypt/decrypt the KeyStore passwords of the election KeyStores

Scytl sVote

Protocol Specifications

29

Additionally, for the Election Information Context, an extra pair of keys (Election Information Signing

Key Pair) are generated to sign the cleansed Ballot Box after the election period ends and before

sending it to the mixing process. To generate this pair of keys, the following steps are executed per

each Tenant:

• Call the RSA Key pair generation primitive and obtain the Election Information Signing key pair

(𝐸𝐼𝑝𝑘
𝑠 , 𝐸𝐼𝑠𝑘

𝑠).

• The Command Line Tool requires entering the platform root KeyStore password to retrieve the

Platform Root CA private key (𝑃𝑅𝐶𝐴𝑠𝑘).

• Call the X509 certificate generation primitive with the Platform Root CA private key (𝑃𝑅𝐶𝐴𝑠𝑘) to

generate the Election Information Signing Certificate. The common name will contain the Tenant

ID and the Service ID.

• The Election Information Signing KeyStore password is encrypted with the Tenant Election

Information Context system public key (𝑇𝐸𝐼𝑝𝑘).

• The Election Information Signing Certificate, the KeyStore and the encrypted password are

uploaded to the Election Information Context.

3.4 Administration Board constitution and registration

Figure 7 - Administration Board constitution and registration

3.4.1 Administration Board constitution

The Administration Board information such as Member details, number of shares and threshold; is

configured in the Administration Portal (AP). The Administration Board is then locally constituted in the

Print Office using the offline SDM through these steps:

Scytl sVote

Protocol Specifications

30

• The Administration Board members (for a specific tenant) are configured in the AP. Several

Administration Boards can be configured and be constituted for the same tenant. This

configuration is synchronized to the Print Office environment.

• Call the RSA Key pair generation primitive and obtain the Administration Board key

pair (𝐴𝐵𝑝𝑘, 𝐴𝐵𝑠𝑘). The private key splitting functionality receives as input the number of shares,

the threshold and the private key. The private key is divided into shares and each share is stored

in a PIN-protected smartcard:

o Smartcards are initialized (fabric configuration or previous shares are erased).

o The RSA private key is divided into as many shares as provided by the configuration,

and with the configured threshold calling the Shamir Threshold Secret Sharing split

algorithm.

o Each share is digitally signed with the Administration Board private key (𝐴𝐵𝑠𝑘).

o Each signed share is written in a PIN-protected smartcard. Each Administration Board

member sets their PIN.

o The Administration Board public key (𝐴𝐵𝑝𝑘) is stored in a CSR (certificate signing

request), which contains an identifier for the Administration Board in the common name.

3.4.2 Administration Board registration

An Administration Board is certified by a Tenant, so that it can sign election configurations and results

which are held in the scope of that Tenant. The certification of the Administration Board is similar to the

certification of the Tenant:

• The Command Line Tool requires entering the Tenant CA KeyStore password to retrieve the

Tenant CA private key (𝑇𝐶𝐴𝑠𝑘).

• Call the X509 certificate generation primitive with the Tenant CA private key (𝑇𝐶𝐴𝑠𝑘) to issue

the Administration Board X509 certificate.

o The validity period of the certificate should be configurable

o The certificate type is “Signing” and “Non-Repudiation”

• The Administration Board certificate is uploaded to the Certificate Registry.

Scytl sVote

Protocol Specifications

31

3.5 Control Components Credentials

Figure 8 - Control Component Constitution and Registration

3.5.1 Control Component CA

The platform host registers the Control Component by issuing the X.509 for the Control Component CA.

For each Choice Return Codes Control Component and each Mixing Control Component:

• Call the RSA Key pair generation primitive and obtain the (𝐶𝐶𝑅𝐶𝐴𝑝𝑘
𝑗
, 𝐶𝐶𝑅𝐶𝐴𝑠𝑘

𝑗
)/

(𝐶𝐶𝑀𝐶𝐴𝑝𝑘
𝑗
, 𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
). The Command Line Tool requires entering the platform root KeyStore

password to retrieve the Platform Root CA private key (𝑃𝑅𝐶𝐴𝑠𝑘).

• The Platform Host CA calls the X509 certificate generation primitive using its private key, to

generate the Control Component CA X509 certificate.

• The Control Component CA certificate and KeyStores are uploaded to the respective CC.

• Each Control Component checks the certificate chain [Control Component CA, Platform Root

CA].

• The KeyStore and password are kept by the Control Component, locally.

3.5.2 Control Components Logging Keys

Each Control Component generates two key pairs to start logging information in a secure way. One key

pair will be used to encrypt and the other to sign.

• Calls twice to the RSA Key pair generation primitive and obtain the Control Components

Logging key pairs: (𝐶𝐶𝑅𝑙𝑜𝑔
𝑝𝑘
𝑗,𝑒 , 𝐶𝐶𝑅𝑙𝑜𝑔

𝑠𝑘
𝑗,𝑒) , (𝐶𝐶𝑅𝑙𝑜𝑔

𝑝𝑘
𝑗,𝑠 , 𝐶𝐶𝑅𝑙𝑜𝑔

𝑠𝑘
𝑗,𝑠) , (𝐶𝐶𝑀𝑙𝑜𝑔

𝑝𝑘
𝑗,𝑒 , 𝐶𝐶𝑀𝑙𝑜𝑔

𝑠𝑘
𝑗,𝑒),

(𝐶𝐶𝑀𝑙𝑜𝑔
𝑝𝑘
𝑗,𝑠 , 𝐶𝐶𝑀𝑙𝑜𝑔

𝑠𝑘
𝑗,𝑠).

• The Control Component retrieves the Control Component CA private key (𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
)

stored in the KeyStore.

• Call twice to the X509 certificate generation primitive with the Control Component CA private

key (𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
) to generate the logging signing and encryption X509 certificates.

Scytl sVote

Protocol Specifications

32

These certificates should contain in the common name, the name of the component for which

they are issued.

• The logging signing/encryption private keys are stored in a KeyStore.

3.5.3 Control Component Encryption Keys

The Control Components encryption key will be generated through the following steps:

• Call the RSA Key pair generation primitive and obtain the Control Component Encryption key

pair.

• The Control Component retrieves the Control Component CA private key (𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
)

stored in the KeyStore.

• Call the X509 certificate generation primitive with the Control Component CA private key

(𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
) to generate the Control Component Encryption X509 Certificate. This

certificate should contain in the common name, the name of the component for which they are

issued.

• The private RSA key is stored into a KeyStore and seal it with the password.

Scytl sVote

Protocol Specifications

33

4 Election configuration process

The following diagram is an overview of the election configuration process. This process is mainly

managed by the Voting Card Generation and Election Keys Generation modules in the Print Office

component. Furthermore, the modules of the Print Office components need to interact with the Control

Components through the Election Information Context module of the Voting Server component.

Since Voting Card Generation, Election Keys Generation and Election Information Context modules

uses the Secure Data Manager software component for performing these operations, for simplicity

reasons, the explanation refers to the Secure Data Manager instead of specifying the Print Office and

Voting Server modules. The differentiation between offline Secure Data Manager when talking about

the Print Office modules, and online Secure Data Manager when talking about the Voting Server module

(that mainly acts as a proxy) is maintained though. Sections 4.8 to 4.11 are omitted in the diagram since

they are just a description of how the information is grouped.

The Election Configuration process begins in the Administration Portal, where the elements needed to

run an election can be configured. These elements are:

• Ballots

• Ballot Boxes

• Electoral Authority Lists

• Voting Card Sets

In the Administration Portal, no cryptographic operations are done, all the cryptographic information

needed to run an election is generated either in the Print Office environment executing the offline Secure

Data Manager, or in the Control Components.

Once the previously described elements are fully configured, they are downloaded from the Print Office

or uploaded to the Control Components.

It is mandatory for an Election Event to have a constituted Administration Board assigned to it, to start

the process.

The configuration generated in the Control Components is downloaded to the Print Office to be signed

by the Administration Board as part of the election configuration.

The processes detailed in this section are all executed in the Print Office environment using the offline

Secure Data Manager, except for those where it is explicitly indicated that they are run in the Control

Components.

Before describing the Election configuration process in detail, some notations regarding keys, codes

and variables are needed.

Scytl sVote

Protocol Specifications

34

Figure 9 - Election configuration phase overview

4.1 Notation

Variable Meaning

𝒑 Defines the order of the group.

𝒒 Defines the order of the subgroup of quadratic residues.

𝒈 The generator of the mathematical group.

𝒋 Index used to refer to a specific Control Component

𝒊 Index used to refer to a specific voting options or specific Choice

Return Code.

Scytl sVote

Protocol Specifications

35

Variable Meaning

𝝍 Maximum number of options a voter can select (it is also the number

of elements of the Choice Return Codes Encryption private and

public keys).

𝒊𝒅 Index used to refer to a specific voter.

𝒏 Number of voting options available in the election

𝒌 Number of allowed write-ins

𝒗𝒊 The encoding (a prime number) of the voting option selected by the

voter.

𝒎 Number of elements of the Election key, that is the number of write-

ins 𝑘 plus 1.

Table 3 - Variables notation

IDs Meaning

𝒗𝒄𝒅𝒊𝒅 Voting Card ID. It identifies the Voting Card Data corresponding to a

specific voter.

𝒗𝒄𝒅𝒔𝒊𝒅 Voting Card Set ID. It identifies the set of information common to a

group of Voting Card IDs. It has one to one correspondence with the

Verification Card Set ID. Voting Card Set

𝒗𝒄𝒊𝒅 Verification Card ID. It identifies the Verification Card Data

corresponding to a specific voter.

𝒗𝒄𝒔𝒊𝒅 Verification Card Set ID. It identifies the set of information common

to a group of Verification Card IDs. It has one to one

correspondence with the Voting Card Set ID.

𝒄𝒊𝒅 Credential ID corresponding to a specific voter.

Table 4 - Voter Identifiers

IDs Meaning

𝒃𝒃𝒊𝒅 Ballot box ID. It identifies a ballot box.

𝒃𝒊𝒅 Ballot ID. It identifies a ballot. One ballot can be related to more than

one Ballot Boxes.

𝒆𝒆𝒊𝒅 Election Event ID. It identifies an election.

Table 5 - Election Identifiers

Scytl sVote

Protocol Specifications

36

Codes Meaning

𝑺𝑽𝑲𝒊𝒅 Start Voting Key associated to 𝑖𝑑.

𝑪𝑪𝒊
𝒊𝒅 𝑖-th short Choice Return Code associated to 𝑖𝑑.

𝒑𝑪𝑪𝒊
𝒊𝒅 𝑖-th partial Choice Return Code associated to 𝑖𝑑.

𝒍𝑪𝑪𝒊
𝒊𝒅 𝑖-th long Choice Return Code associated to 𝑖𝑑.

𝒑𝑪𝒊
𝒊𝒅 𝑖-th pre-Choice Return Code associated to 𝑖𝑑.

𝑽𝑪𝑪𝒊𝒅 short Vote Cast Return Code associated to 𝑖𝑑.

𝒍𝑽𝑪𝑪𝒊𝒅 long Vote Cast Return Code associated to 𝑖𝑑.

𝒑𝑽𝑪𝑪𝒊𝒅 pre-Vote Cast Return Code associated to 𝑖𝑑.

𝑩𝑪𝑲𝒊𝒅 Ballot Casting Key associated to 𝑖𝑑.

𝑪𝑴𝒊𝒅 Confirmation Message associated to 𝑖𝑑.

Table 6 - Codes notation

Scytl sVote

Protocol Specifications

37

Key Variable Occurrence Owner Meaning

Election Event

Root CA

private key

𝐸𝐸𝐶𝐴𝑠𝑘 1 per Election Event Tenant This RSA private key is used

to issue the Services CA,

Authorities CA and

Credentials CA certificates.

Election Event

Root CA

public key

𝐸𝐸𝐶𝐴𝑝𝑘 1 per Election Event Tenant This RSA public key is used

to validate the Services CA,

Authorities CA and

Credentials CA certificates.

Services CA

private key

𝑆𝐶𝐴𝑠𝑘 1 per Election Event Tenant This RSA private key is used

to issue the Authentication

Token Signer, the Ballot Box,

the Verification Card Set

Issuer and the Vote Cast

Code Signer certificates.

Services CA

public key

𝑆𝐶𝐴𝑝𝑘 1 per Election Event Tenant This RSA public key is used

to validate the Authentication

Token Signer, the Ballot Box,

the Verification Card Set

Issuer and the Vote Cast

Code Signer certificates.

Authorities CA

private key

𝐴𝐶𝐴𝑠𝑘 1 per Election Event Tenant This RSA private key is used

to sign the Electoral Board

private key (𝐸𝐵𝑠𝑘) shares.

Authorities CA

public key

𝐴𝐶𝐴𝑝𝑘 1 per Election Event Tenant This RSA public key is used

to validate the signature of

the Electoral Board private

key (𝐸𝐵𝑠𝑘) shares.

Credentials

CA private key

𝐶𝐶𝐴𝑠𝑘 1 per Election Event Tenant This RSA private key is used

to issue the voters’

certificates.

Credentials

CA public key

𝐶𝐶𝐴𝑝𝑘 1 per Election Event Tenant This RSA public key is used

to validate the voters’

certificates.

Table 7 - Election CA keys notation

Scytl sVote

Protocol Specifications

38

Key Variable Occurrence Owner Meaning

Authentication

Token Signer

private key

𝐴𝑇𝑠𝑠𝑘 1 per

Election

Event

Voting Server

(Authentication

Context)

This RSA private key is used

both for signing the

Authentication Token and the

Server Challenge.

Authentication

Token Signer

public key

𝐴𝑇𝑠𝑝𝑘 1 per

Election

Event

Voting Server

(Authentication

Context)

This RSA public key is used

both for verifying the

Authentication Token signature

and the Server Challenge

signature.

Ballot Box

Signer private

key

𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑 1 per Ballot

Box

Voting Server

(Election

Information

Context)

This RSA private key is used to

sign the receipt and the datasets

generated during the Ballot Box

Export.

Ballot Box

Signer public

key

𝐵𝐵𝑠𝑝𝑘
𝑏𝑏𝑖𝑑 1 per Ballot

Box

Voting Server

(Election

Information

Context)

This RSA public key is used to

validate the signature generated

with the corresponding private

key.

Verification Card

private key

𝑘𝑖𝑑 1 per voter Voter This ElGamal private key is

used to compute the partial

Choice Return Code

(𝑝𝐶𝐶𝑖
𝑖𝑑) and the confirmation

message (𝐶𝑀𝑖𝑑).

Verification Card

public key

𝐾𝑖𝑑 1 per voter Voter This ElGamal public key is used

to generate and verify the

Exponentiation Proof computed

by the voting client.

Verification Card

Set Issuer

private key

𝑉𝐶𝐼𝑠𝑘 1 per

Verification

Card Set

Secure Data

Manager

This RSA private key is used to

sign all the Verification Card

Public keys (𝐾𝑖𝑑) corresponding

to the Verification Card IDs

belonging to the Verification

Card Set.

Verification Card

Set Issuer public

key

𝑉𝐶𝐼𝑝𝑘 1 per

Verification

Card Set

Voting Server

(Vote

Verification

Context)

This RSA public key is used to

verify the signature generated

with the corresponding private

key.

Scytl sVote

Protocol Specifications

39

Key Variable Occurrence Owner Meaning

Vote Cast

Return Code

Signer private

key

𝑉𝐶𝐶𝑠𝑠𝑘 1 per

Verification

Card Set

Voting Server

(Vote

Verification

Context)

This RSA private key is used to

sign each short Vote Cast

Return Code(𝑉𝐶𝐶𝑖𝑑)

corresponding to each

Verification Card ID belonging to

the set.

Vote Cast

Return Code

Signer public

key

𝑉𝐶𝐶𝑠𝑝𝑘 1 per

Verification

Card Set

Voting Server

(Vote

Verification

Context)

This RSA public key is used to

verify the signature generated

with the corresponding private

key.

Codes Secret

Key

𝐶𝑠𝑘 1 per

Verification

Card Set

Voting Server

(Vote

Verification

Context)

This symmetric key is used to

compute the long Choice Return

Codes (𝑙𝐶𝐶𝑖
𝑖𝑑) and the long Vote

Cast Return Codes (𝑙𝑉𝐶𝐶𝑖𝑑).

Credential ID

authentication

private key

𝑘𝐶𝑖𝑑
𝑎 1 per voter Voter This RSA private key is used to

sign the Client Challenge.

Credential ID

authentication

public key

𝐾𝐶𝑖𝑑
𝑎 1 per voter Voter This RSA public key is used to

verify the signatures generated

with the corresponding private

key.

Credential ID

signing private

key

𝑘𝐶𝑖𝑑
𝑠 1 per voter Voter This RSA private key is used to

sign the vote and the

Confirmation Message (𝐶𝑀𝑖𝑑).

Credential ID

signing public

key

𝐾𝐶𝑖𝑑
𝑠 1 per voter Voter This RSA public key is used to

verify the signatures generated

with the corresponding private

key.

KeyStore

symmetric

encryption key

𝐾𝑆𝑘𝑒𝑦𝑖𝑑 1 per voter Voter This symmetric key is used to

seal the voter’s KeyStore.

Scytl sVote

Protocol Specifications

40

Key Variable Occurrence Owner Meaning

𝑪𝑪𝑹𝒋 Choice

Return Codes

Encryption

private key

𝑠𝑘𝐶𝐶𝑅𝑗 1 per

Verification

Card Set

Control

Component

𝐶𝐶𝑅𝑗

This ElGamal private key is

used to partially decrypt the

encrypted pre-Choice Return

Codes (𝑝𝐶𝑖
𝑖𝑑). This key will have

as many elements

(𝜓) as the maximum number of

options a voter can select. We

will refer to one specific element

as 𝑠𝑘𝐶𝐶𝑅𝑗
(𝑖)

.

𝑪𝑪𝑹𝒋 Choice

Return Codes

Encryption

public key

𝑝𝑘𝐶𝐶𝑅𝑗 1 per

Verification

Card Set

Control

Component

𝐶𝐶𝑅𝑗

This ElGamal public key is used

during the computation of the

Choice Return Codes

Encryption public key (𝑝𝑘𝐶𝐶𝑅).

This key will have as many

elements (𝜓) as the maximum

number of options a voter can

select. We will refer to one

specific element as 𝑝𝑘𝐶𝐶𝑅𝑗
(𝑖)

.

𝑪𝑪𝑹𝒋 Choice

Return Codes

Generation

private key

 𝑘𝑗
′ 1 per

Verification

Card Set

Control

Component

𝐶𝐶𝑅𝑗

This ElGamal private key is

used to derived Voter Choice

Return Code generation private

key (𝑘𝑖𝑑
𝑗
) and the Voter Vote

Cast Return Code generation

private key

(𝑘𝑐𝑖𝑑
𝑗
).

𝑪𝑪𝑹𝒋 Choice

Return Codes

Generation

public key

𝑔𝑘𝑗
′

 1 per

Verification

Card Set

Control

Component

𝐶𝐶𝑅𝑗

This is the ElGamal public key

corresponding to the 𝐶𝐶𝑅𝑗

Choice Return Codes

Generation private key (𝑘𝑗
′).

Scytl sVote

Protocol Specifications

41

Key Variable Occurrence Owner Meaning

Choice Return

Codes

Encryption

private key

𝑠𝑘𝐶𝐶𝑅 1 per

Verification

Card Set

Control

Components

This ElGamal private key is a

combination of the 𝐶𝐶𝑅𝑗 Choice

Return Codes Encryption private

keys

(𝑠𝑘𝐶𝐶𝑅𝑗). This key will have as

many elements

(𝜓) as the maximum number of

options a voter can select. We

will refer to one specific element

as 𝑠𝑘𝐶𝐶𝑅
(𝑖)
.

Choice Return

Codes

Encryption

public key

𝑝𝑘𝐶𝐶𝑅 1 per

Verification

Card Set

Control

Components

This ElGamal public key is used

to encrypt the partial Choice

Return Codes (𝑝𝐶𝐶𝑖
𝑖𝑑) in the

voting client. This key will have

as many elements

(𝜓) as the maximum number of

options a voter can select. We

will refer to one specific element

as 𝑝𝑘𝐶𝐶𝑅
(𝑖)
.

Voter Choice

Return Code

generation

private key

𝑘𝑖𝑑
𝑗

 1 per voter Control

Component

𝐶𝐶𝑅𝑗

This ElGamal private key is

used by the Control

Component 𝐶𝐶𝑅𝑗 to compute the

exponentiation of the encrypted

partial Choice Return Codes

(𝑝𝐶𝐶𝑖
𝑖𝑑).

Voter Choice

Return Code

generation

public key

𝐾𝑖𝑑
𝑗

 1 per voter Control

Component

𝐶𝐶𝑅𝑗

This ElGamal public key is used

to compute the exponentiation

proof of the encrypted partial

Choice Return Codes (𝑝𝐶𝐶𝑖
𝑖𝑑) in

the Control Component and to

verify it later.

Voter Vote Cast

Return Code

generation

private key

𝑘𝑐𝑖𝑑
𝑗

 1 per voter Control

Component

𝐶𝐶𝑅𝑗

This ElGamal private key is

used by the Control Component

𝐶𝐶𝑅𝑗 to compute the

exponentation of the

Confirmation Message (𝐶𝑀𝑖𝑑).

Scytl sVote

Protocol Specifications

42

Key Variable Occurrence Owner Meaning

Voter Vote Cast

Return Code

generation

public key

𝐾𝑐𝑖𝑑
𝑗

 1 per voter Control

Component

𝐶𝐶𝑅𝑗

This ElGamal public key is used

to compute the exponentiation

proof of the confirmation

message (𝐶𝑀𝑖𝑑). in the Control

Component and to verify it later.

Electoral Board

private key

𝐸𝐵𝑠𝑘 1 per

Electoral

Board

Electoral Board This ElGamal private key is split

and each piece in stored in a

smartcard belonging to one

Electoral Board member. The

reconstructed key is used to

perform the final decryption. In

case write-ins are enabled, this

key will have as many elements

as the number of write-ins (𝑘)

plus 1.

Electoral Board

public key

𝐸𝐵𝑝𝑘 1 per

Electoral

Board

Authority

Electoral Board This ElGamal public key is used

to compute the Election public

key (𝐸𝐿𝑝𝑘). In case write-ins are

enabled, this key will have as

many elements as the number

of write-ins (𝑘) plus 1.

𝑪𝑪𝑴𝒋 Mixing

private key

𝑥𝑗 1 per Control

Component

𝐶𝐶𝑀𝑗

Control

Component

𝐶𝐶𝑀𝑗

This ElGamal private key is

used to perform partial

decryption in the corresponding

𝐶𝐶𝑀𝑗. In case write-ins are

enabled, this key will have as

many elements as the number

of write-ins (𝑘) plus 1.

𝑪𝑪𝑴𝒋 Mixing

public key

𝑔𝑥𝑗 1 per Control

Component

𝐶𝐶𝑀𝑗

Control

Component

𝐶𝐶𝑀𝑗

This ElGamal public key is used

to compute the Election public

key (𝐸𝐿𝑝𝑘). In case write-ins are

enabled, this key will have as

many elements as the number

of write-ins (𝑘) plus 1.

Scytl sVote

Protocol Specifications

43

Key Variable Occurrence Owner Meaning

Election private

key

𝐸𝐿𝑠𝑘 1 per

Electoral

Board

Authority

Control

Components

𝐶𝐶𝑀

This ElGamal private key is a

combination of the Electoral

Board private key

(𝐸𝐵𝑠𝑘) and the Control

Components Mixing private keys

(𝑥𝑗). In case write-ins are

enabled, this key will have as

many elements as the number

of write-ins plus 1.

Election public

key

𝐸𝐿𝑝𝑘 1 per

Electoral

Board

Authority

Control

Components

𝐶𝐶𝑀

This ElGamal private key is a

combination of the Electoral

Board public key (𝐸𝐵𝑝𝑘) and the

Control Components Mixing

public keys (𝑔𝑥𝑗) and it is used

to encrypt the voting options. In

case write-ins are enabled, this

key will have as many elements

as the number of write-ins plus

1.

𝑪𝑪𝑹𝒋 signing

private key

𝑠𝑘𝐶𝐶𝑅𝑗
𝑠 1 per

Election

Event

Control

Component

𝐶𝐶𝑅𝑗

This RSA private key is used to

sign the information generated

by 𝐶𝐶𝑅𝑗.

 𝑪𝑪𝑹𝒋 signing

public key

𝑝𝑘𝐶𝐶𝑅𝑗
𝑠 1 per

Election

Event

Control

Component

𝐶𝐶𝑅𝑗

This RSA public key is used to

verify signatures generated with

the corresponding private key.

𝑪𝑪𝑴𝒋 signing

private key

𝑠𝑘𝐶𝐶𝑀𝑗
𝑠 1 per

Election

Event

Control

Component

𝐶𝐶𝑀𝑗

This RSA private key is used to

sign the information generated

by 𝐶𝐶𝑀𝑗.

 𝑪𝑪𝑴𝒋 signing

public key

𝑝𝑘𝐶𝐶𝑀𝑗
𝑠 1 per

Election

Event

Control

Component

𝐶𝐶𝑀𝑗

This RSA public key is used to

verify signatures generated with

the corresponding private key.

Scytl sVote

Protocol Specifications

44

Key Variable Occurrence Owner Meaning

Secure Data

Manager private

key

𝑠𝑘𝑆𝐷𝑀 1 per

Election

Event

Secure Data

Manager

This ElGamal private key is

used by the Print Office to

decrypt the prime numbers and

the ballot casting key

(𝐵𝐶𝐾𝑖𝑑)once they are

exponentiated by the Control

Components.

Secure Data

Manager public

key

𝑝𝑘𝑆𝐷𝑀 1 per

Election

Event

Secure Data

Manager

This ElGamal public key is used

by the Print Office to encrypt the

prime numbers and the ballot

casting key

(𝐵𝐶𝐾𝑖𝑑) to be sent to the

Control Components.

Scytl sVote

Protocol Specifications

45

Key Variable Occurrence Owner Meaning

Choice Return

Code encryption

symmetric key

𝑠𝑘𝑐𝑐𝑖
𝑖𝑑 1 per Choice

Return Code

Voting Server

(Vote

Verification

Context)

This derived key is used to

encrypt the short Choice Return

Code (𝐶𝐶𝑖
𝑖𝑑)

Vote Cast

Return Code

encryption

symmetric key

𝑠𝑘𝑣𝑐𝑐𝑖𝑑 1 per Vote

Cast Return

Code

Voting Server

(Vote

Verification

Context)

This derived key is used to

encrypt the short Vote Cast

Return Code (𝑉𝐶𝐶𝑖𝑑) and its

signature.

Table 8 - Election keys notation

4.2 Create Election Event

Figure 10 - Create Election Event

This process creates all the information related to an Election Event, which includes the election

configuration for the contexts and for the Control Components. A unique Election Event ID (𝑒𝑒𝑖𝑑) is

generated in this step, then the subsequent processes are executed.

The Election Event Certificate hierarchy is the following:

Scytl sVote

Protocol Specifications

46

Figure 11 - Election Event certificate hierarchy

In addition to this certificate hierarchy, the Control Components will create a Control Component signing

certificate per Election.

Figure 12 - Control Components Election Event certificate hierarchy

4.2.1 Generation of local Certification Authorities (CA)

The first information to be created during the Election configuration process are the keys and certificates

for the Certification Authorities. For each one of them we define below how they should be generated:

1) Election Event Root CA

1) Call the RSA Key pair generation primitive and obtain the CA key pair:(𝐸𝐸𝐶𝐴𝑝𝑘 ,

𝐸𝐸𝐶𝐴𝑠𝑘).

Scytl sVote

Protocol Specifications

47

2) Call the X509 certificate generation primitive to generate a self-signed certificate using

𝐸𝐸𝐶𝐴𝑠𝑘. The certificate contains the CA name, the Election Event ID (𝑒𝑒𝑖𝑑), the validity

period and the certificate name field values.

3) Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Passwords must be stored encrypted.

2) Services CA

1) Call the RSA Key pair generation primitive and obtain the CA key pair: (𝑆𝐶𝐴𝑝𝑘, 𝑆𝐶𝐴𝑠𝑘).

2) Call the X509 certificate generation primitive to generate a certificate signed with the

𝐸𝐸𝐶𝐴𝑠𝑘. The certificate contains the CA name, the Election Event ID (𝑒𝑒𝑖𝑑), the validity

period and the certificate name field values.

3) Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Passwords must be stored encrypted.

3) Authorities CA

1) Call the RSA Key pair generation primitive and obtain the CA key pair: (𝐴𝐶𝐴𝑝𝑘, 𝐴𝐶𝐴𝑠𝑘).

2) Call the X509 certificate generation primitive to generate a certificate signed with the

𝐸𝐸𝐶𝐴𝑠𝑘. The certificate contains the CA name, the Election Event ID (𝑒𝑒𝑖𝑑), the validity

period and the certificate name field values.

3) Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Passwords must be stored encrypted.

4) Credentials CA

1) Call the RSA Key pair generation primitive and obtain the CA key pair: (𝐶𝐶𝐴𝑝𝑘, 𝐶𝐶𝐴𝑠𝑘).

2) Call the X509 certificate generation primitive to generate a certificate signed with the

𝐸𝐸𝐶𝐴𝑠𝑘. The certificate contains the CA name, the Election Event ID (𝑒𝑒𝑖𝑑), the validity

period and the certificate name field values.

3) Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

Scytl sVote

Protocol Specifications

48

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Passwords must be stored encrypted.

4.2.2 Selection of encryption parameters and voting option values generation

The encryption parameters (𝑝, 𝑞, 𝑔) used for the ElGamal encryption scheme satisfy the following

conditions:

5) 𝑝 is a safe prime such that 𝑝 = 2𝑞 + 1. 𝑞 is also prime (2047 bits), and 𝑝 is of a defined length

(2048 bits).

6) The generator 𝑔 is of order 𝑞.

7) The subgroup of ℤ𝑝
∗ of order 𝑞, defines the quadratic residue group over which the encryption

scheme is defined.

The values used to represent the voting options in the ballots are chosen from a list of prime numbers

in such a way that they fulfil certain conditions regarding the encryption parameters generated (prime

numbers should be quadratic residues in ℤ𝑝
∗).

Both the encryption parameters and the prime numbers are already computed at this point, and in this

step a tool to select encryption parameters and voting option values, is implemented. This tool selects

at random, a pair of encryption parameters and prime numbers from the sets generated in a pre-

configuration phase, taking into account the number of values that will be needed to represent the voting

options.

4.2.3 Generation of Control Components signing keys

Each Control Component generates a signing certificate per election to sign the information that they

will generate during the configuration, the voting and the counting processes.

1. Call the RSA Key pair generation primitive and obtain the Control Component signing key pair:

(𝑝𝑘𝐶𝐶𝑅𝑗
𝑠 , 𝑠𝑘𝐶𝐶𝑅𝑗

𝑠) / (𝑝𝑘𝐶𝐶𝑀𝑗
𝑠 , 𝑠𝑘𝐶𝐶𝑀𝑗

𝑠).

2. The Control Component is asked to introduce a KeyStore password.

3. The Control Component retrieves the Control Component CA private key (𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
)

stored in the KeyStore.

4. Call the X509 certificate generation primitive with the Control Component CA private key

(𝐶𝐶𝑅𝐶𝐴𝑠𝑘
𝑗
/𝐶𝐶𝑀𝐶𝐴𝑠𝑘

𝑗
) to generate the Control Component Signing X509 Certificate. The

certificate should contain in the common name, the name of the component for which it is issued

and the election event ID (𝑒𝑒𝑖𝑑).

5. Call the Random value generation primitive to generate a random password of length 26 chars

in base 32.

6. The private RSA key is stored into a KeyStore and seal it with the password.

Scytl sVote

Protocol Specifications

49

7. The KeyStore password must be stored encrypted using the Control Component encryption

private key (𝐶𝐶𝑅𝑒𝑝𝑘
𝑗
/𝐶𝐶𝑀𝑒𝑝𝑘

𝑗
).

4.2.4 Generation of Authentication Context Information

In this step, the set of configuration information that should be stored in the Authentication Context is

created. Some of this information, such as the Election Event ID (𝑒𝑒𝑖𝑑) and the CA certificates, have

been already generated in previous steps.

First, the Authentication Token Signer key pair and certificate are generated:

1. Call the RSA Key pair generation primitive and obtain the Authentication Token Signer key pair

(𝐴𝑇𝑠𝑝𝑘, 𝐴𝑇𝑠𝑠𝑘).

2. Call the X509 certificate generation primitive to generate a certificate containing the Election

Event ID (𝑒𝑒𝑖𝑑), the validity period, the target service identifier and the certificate name field

values, signed with the Services CA private key (𝑆𝐶𝐴𝑠𝑘).

3. Call the Random value generation primitive to generate a random password of length 26 chars

in base 32. This is the Authentication Token Signer Password.

4. Store the private RSA key into a KeyStore and seal it with the password.

5. Encrypt the Authentication Token Signer Password with the Authentication Context System

public key.

Then, the following set-up parameters are established:

• Challenge-response expiration time

• Authentication Token expiration time

• Challenge length

Finally, the information is grouped as follows to distinguish the data to be sent to the Client Context and

the data that will remain in the Authentication Context:

Authentication Voter Data

- Election Event ID (𝒆𝒆𝒊𝒅)

- Election Event Root CA

- Services CA

- Authorities CA

- Credentials CA

- Authentication Token Signer certificate

Table 9- Authentication Voter Data

Authentication Context Data

Scytl sVote

Protocol Specifications

50

- Election Event ID (𝒆𝒆𝒊𝒅)

- Authentication Token Signer KeyStore

- Authentication Token Signer Password (encrypted with the Authentication Context System

public key)

- Setup parameters:

- Challenge-response expiration time

- Authentication Token expiration time

- Challenge length

Table 10 - Authentication Context Data

4.2.5 Generation of Election Information Context Information

It generates the set of configuration information that should be stored in the Election Information Context.

The set of information is the following:

Election Information Context Data

- Election Event ID (𝒆𝒆𝒊𝒅)

- Election Event Root CA

- Services CA

- Authorities CA

- Credentials CA

- Setup parameters:

- Number of votes per Voting Card ID

- Number of votes per Authentication Token ID

Table 11 - Election Information Context Data

4.2.6 Generation of Voting Workflow Context Information

Generates the information to be stored in the Voting Workflow Context:

Voting Workflow Context Data

- Number of confirmation attempts

Table 12 - Voting Workflow Context Data

4.3 Create Ballot

It assigns values to the voting options in a ballot. The following processes are executed.

• Assignation of voting option values.

• Assignation of attributes to voting options.

Scytl sVote

Protocol Specifications

51

4.3.1 Assignation of voting option values

The ballot contains the election information to be displayed to the voter, such as the questions and the

possible answers they can choose from. It also contains some rules to be enforced/checked on the

voter’s selections (for example, not selecting more than one answer).

In this step, a value (prime number) is assigned to each of the voting options in the ballot. These values

will be those encrypted at the voting phase.

The format of the complete ballot is detailed below.

4.3.1.1 Ballot format

The ballot contains the following fields:

Scytl sVote

Protocol Specifications

52

Ballot

Scytl sVote

Protocol Specifications

53

- Ballot ID (𝒃𝒊𝒅)

- Default title

- Default description

- Alias

- Election Event ID (𝒆𝒆𝒊𝒅)

- Contest (as many as the number of contests)

- Contest ID

- Default title

- Alias

- Election Event ID (𝒆𝒆𝒊𝒅)

- Template (options or list and candidates)

- Full Blank (true or false): Setting this field to true, the voter can send the vote without

selecting any option (election rules defined in “questions” do not apply).

- Options: (As many as options in the contest)

▪ ID

▪ Representation: prime number

▪ Attribute: Refers to one attribute of the next section and defines what kind of

option it is (candidate, list, answer, write-in, blank candidate, blank list…).

- Attributes

▪ ID

▪ Alias

▪ Correctness: (True or false)

▪ Related: Attributes related with this attribute (for instance, a specific answer is

related with the attribute that represents its question).

- Questions: (One per selectable option, that is, a list, a candidate, a question)

▪ ID

▪ Max: Maximum number of selections for this question

▪ Min: Minimum number of selections for this question

▪ Accumulation: Will be greater than 1 if the question can be selected more

than once (for instance, vote twice for the same candidate).

▪ writeIn: True if the question allows write-ins

▪ blankAttribute: Attribute ID representing the blank attribute for this question.

▪ writeInAttribute: Writein attribute ID representing the write in attribute for this

question.

▪ attribute: Attribute ID

▪ fusions: Contains the alias of the attributes that represents the same.

- encryptedCorrectnessRule: To be executed during the voting phase in the Election

Information Context.

- decryptedCorrectnessRule: To be executed over the decrypted vote.

Scytl sVote

Protocol Specifications

54

- Status

- Details

- Synchronized

- ballotBoxes

- signedObject

Table 13 - Ballot

4.3.1.2 Write-ins

Depending on the type of the election, the ballot can allow the voter to enter k write-ins, that is, the voter

can introduce some free-text. The protocol does not support individual verifiability of the content of the

write-ins (it is impossible to generate Choice Return Codes from open text). However, the protocol can

be used to prove the voter whether his/her intention has been casting a write-in instead of a selection

of an explicit candidate or an explicit blank vote. This option only provides individual verifiability of explicit

options when write-in is another option.

In this case, the ballot should contain one voting option for each write-in and a voting option value

assigned to each one. This value does not represent the text inside the write-in but the fact that the

voter has filled it in. The “write-in filled” voting options need to have the following labels/attributes:

• “write-in”

• An identifier of the write-in position to which they belong, so that a “write-in filled” voting option

value can be related to a specific write-in field.

The text introduced by the voter should be encoded into a group element. Note that in order to be a

group element, the value should be a quadratic residue.

4.3.2 Assignation of attributes to voting options

The voting options in the ballot are labelled with a set of attributes which allow the following:

• To print them with the correct format in the voter screen.

• To check that a vote is well-formed (hence, it contains a valid set of voting options). This check,

also referred as vote correctness verification, is part of the cryptographic protocol. The vote

correctness is checked at two levels.

o The first level is when the vote is in plain text, and validations that need the full context

of the election can be applied to it. These validations are done both before the vote is

encrypted in the voting client and when the vote is decrypted.

o The second level is done at the voting server over the encrypted vote. Vote correctness

validations include validations about the write-ins, the existence of the return codes or

the number of elements of the encrypted vote (among others).

Scytl sVote

Protocol Specifications

55

Some of the attributes are used for verifying the vote correctness during the voting phase, which means

that they are sent to the server, together with the vote. Such attributes are configured to contain a flag

“correctness” set to true, while other attributes have this flag set to false.

The following attributes in the ballot have the flag “correctness = true”:

• Options:

o Question ID attribute (the attribute that refers to which question the voting option

belongs to).

• List and Candidates:

o List attribute (the attribute that says that this is a list).

o Candidate attribute (the attribute that says that this is a candidate).

Other attributes such as (blank, non_blank, writein) have the flag “correctness = false”.

4.4 Create Ballot Boxes

This process generates the configuration data specific to a set of Ballot Boxes. The Ballot Box

configuration data defines how the votes are going to be encrypted (e.g., encryption parameters), stored

(e.g., voting period) and verified (e.g., verification grace period).

Additionally, Ballot Boxes can be configured as a Test Ballot Box, which means that they can be

downloaded at any time during the election process. One Ballot Box is identified by a unique Ballot Box

Identifier (Ballot Box ID (𝑏𝑏𝑖𝑑)) and is defined to contain one type of ballot, defined by the Ballot ID

(𝑏𝑖𝑑). However, the same type of ballot may be stored in different Ballot Boxes.

For each of the Ballot Box identified by its corresponding Ballot Box ID (𝑏𝑏𝑖𝑑):

1) Call the RSA Key pair generation primitive and obtain the Ballot Box Signer key pair

(𝐵𝐵𝑠𝑝𝑘
𝑏𝑏𝑖𝑑 , 𝐵𝐵𝑠𝑠𝑘

𝑏𝑏𝑖𝑑).

2) Call the X509 certificate generation primitive to generate a X.509 certificate containing the Ballot

Box ID (𝑏𝑏𝑖𝑑), the validity period and the certificate name field values. This certificate is signed

with the Services CA private key (𝑆𝐶𝐴𝑠𝑘).

3) Call the Random value generation primitive to generate a random password of length 26 chars

in base 32.

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Encrypt the password with the Election Information Context System public key.

6) Generate Ballot Box Information structure containing:

Scytl sVote

Protocol Specifications

56

Ballot Box Information

- Ballot Box ID (𝒃𝒃𝒊𝒅)

- Grace Period

- Alias

- Encryption Parameters

- Election Key ID

- Write-In Alphabet

- Confirmation Required

- Ballot Box Certificate

- Ballot ID (𝒃𝒊𝒅)

- Test

- Start date

- End date

- Election Event ID (𝒆𝒆𝒊𝒅)

Table 14 - Ballot Box Information

7) Generate a Ballot Box Context Data structure containing:

Ballot Box Context Data

- Ballot Box ID (𝒃𝒃𝒊𝒅)

- Election Event ID (𝒆𝒆𝒊𝒅)

- KeyStore

- KeyStore password (encrypted with the Election Information Context System

public key)

Table 15 - Ballot Box Context Data

8) Generate a Ballot Box Voter Data structure containing:

Ballot Box Voter Data

- Ballot ID (𝒃𝒊𝒅)

- Ballot Box ID (𝒃𝒃𝒊𝒅)

- Election Event ID (𝒆𝒆𝒊𝒅)

- Encryption parameters

- Ballot Box certificate

- Election key

Table 16 - Ballot Box Voter Data

Note that the information related with the Election key that is part of both the Ballot Box Information and

Ballot Box Voter Data, cannot be included yet since it has not been generated yet. The Election key

generation is explained in section 4.5.3.

Scytl sVote

Protocol Specifications

57

4.5 Create Election key

Figure 13 - Create Election key

The Election key is generated among the 𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3 and the Electoral Board. The election

public key (𝐸𝐿𝑝𝑘) is set to be part of the information linked to one or more Ballot Boxes, and the votes

which are intended to be stored in these Ballot Boxes will be encrypted with this key. The election private

key (𝐸𝐿𝑠𝑘) is kept by the Electoral Board members and the Control Components (𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3),

which will use it to decrypt the votes collected in these Ballot Boxes after the voting phase ends. Without

the decryption key, the votes cannot be decrypted, and the results cannot be obtained.

Figure 14 - Election key generation

4.5.1 Create Electoral Board Authority

The Electoral Board is an entity formed by several members who are responsible for decrypting the

votes which have been collected in determined Ballot Boxes during an Election Event.

For this purpose, they are responsible for the generation of a pair of encryption/decryption keys.

The Electoral Board private key (𝐸𝐵𝑠𝑘) key is split using a secret sharing scheme, and each piece is

provided to one of the Electoral Board members. This prevents an Electoral Board member from being

able to decrypt a set of votes on their own (for example, before the voting phase ends, to get some

partial results information), without the agreement of a certain number of other members.

For each Electoral Board Authority, identified by the corresponding Electoral Authority ID, and given the

threshold value:

Scytl sVote

Protocol Specifications

58

1) Call the ElGamal Key pair generation primitive using the encryption parameters and obtain the

Electoral Board key pair: (𝐸𝐵𝑝𝑘, 𝐸𝐵𝑠𝑘) = (𝑔
𝐸𝐵𝑆𝐾 , 𝐸𝐵𝑠𝑘)

2) Call the Shamir Threshold Secret Sharing split algorithm to split the Electoral Board private key

(𝐸𝐵𝑠𝑘) into as many pieces as indicated by the number of members of the EB, and with the

threshold defined.

3) Call the Digital signature generation primitive to sign every share with the Authorities CA private

key (𝐴𝐶𝐴𝑠𝑘)

4) Generate the Electoral Authority structure containing:

Electoral Authority Data

- Electoral Authority ID

- Electoral authority public key (𝑬𝑩𝒑𝒌)

Table 17 - Electoral Authority Data

As mentioned before, the Electoral Board Authority is generated by the Election Keys Generation

module of the Print Office component using the SDM offline software.

4.5.2 Create Control Components Mixing key

In this step the Control Components contributions to the Election key pair (𝐸𝐿𝑝𝑘, 𝐸𝐿𝑠𝑘) are generated.

For each Electoral Authority and each Control Component 𝐶𝐶𝑀𝑗 where 𝑗 ∈ {1,2,3}:

1. Call the ElGamal Key pair generation primitive using the encryption parameters provided and

obtain the 𝐶𝐶𝑀𝑗 Mixing key pair: (𝑔𝑥𝑗 , 𝑥𝑗).

2. Call the Digital signature generation primitive to sign the 𝐶𝐶𝑀𝑗 Mixing public key (𝑔𝑥𝑗) together

with the Electoral Authority ID and the Election Event ID (𝑒𝑒𝑖𝑑) using the 𝐶𝐶𝑀𝑗 signing private

key (𝑠𝑘𝐶𝐶𝑀𝑗
𝑠).

3. Encrypt 𝐶𝐶𝑀𝑗 Mixing private key (𝑥𝑗) using the 𝐶𝐶𝑀𝑗 encryption public key (𝐶𝐶𝑀𝑒𝑝𝑘
𝑗
).

The 𝐶𝐶𝑀𝑗 mixing public key (𝑔𝑥𝑗) and its signature are sent to the Secure Data Manager (Print Office)

to constitute the Election public key (𝐸𝐿𝑝𝑘) once the Electoral Board has been created.

4.5.3 Constitute Election key

Once the Control Components and the Electoral Board have generated their own keys, the Election key

can be constituted following the next steps:

1. Validate the Control Components certificate chains:

o [𝐶𝐶𝑀1 signing certificate, 𝐶𝐶𝑀1 CA Certificate, Platform Root CA]

o [𝐶𝐶𝑀2 signing certificate, 𝐶𝐶𝑀2 CA Certificate, Platform Root CA]

Scytl sVote

Protocol Specifications

59

o [𝐶𝐶𝑀3 signing certificate, 𝐶𝐶𝑀3 CA Certificate, Platform Root CA]

2. Validate the following signatures using the corresponding 𝐶𝐶𝑀𝑗 signing certificate:

o 𝐶𝐶𝑀1 mixing public key (𝑔𝑥1) signature

o 𝐶𝐶𝑀2 mixing public key (𝑔𝑥2) signature

o 𝐶𝐶𝑀3 mixing public key (𝑔𝑥3) signature

3. Generate the Election public key:

𝐸𝐿𝑝𝑘 = 𝐸𝐵𝑝𝑘 ·∏𝑔𝑥𝑗

3

𝑗=1

= 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗
3
𝑗=1

4. Generate the Election Key structure containing:

Election Key Data

- Election Key ID

- Election public key (𝑬𝑳𝒑𝒌)

Table 18 - Election Key Data

5. Fill the Election Key ID field in each of the Ballot Box Information items (see Table 14 - Ballot

Box Information).

6. Fill the Election Key ID field in each of the Ballot Box Voter Data items

4.5.3.1 Election key when write-ins are allowed

In case the election type allows the voter to enter free text (write-in), additional ciphertexts resulting in

the encryption of these text values are added to the vote message. The key to encrypt them should be

different from the one used to encrypt the votes to prevent attacks.

For this purpose, the Electoral Board Key and the Control Components Mixing Key should have at least

as many components as the maximum number of write-ins (𝑘) to be filled in a ballot managed by such

Electoral Authority, plus one.

𝐸𝐿𝑝𝑘 = (𝐸𝐿𝑝𝑘
(1), … , 𝐸𝐿𝑝𝑘

(𝑚)
)

Scytl sVote

Protocol Specifications

60

4.6 Protocol Setup algorithm

Figure 15 - Protocol Setup algorithm

During the execution of the Setup algorithm the following information is generated:

• SDM encryption key pair

• Verification Card Set Data

• Voting Card Set Data

o Start Voting Key (𝑆𝑉𝐾𝑖𝑑), Credential ID (𝑐𝑖𝑑) and KeyStore symmetric encryption key

(𝐾𝑆𝑘𝑒𝑦𝑖𝑑)

o Credential Data

o Verification Card Data

o Verification Card Codes

Scytl sVote

Protocol Specifications

61

While the SDM encryption key pair and the Verification Card Set Data are generated entirely in the

Secure Data Manager (Print Office), the Voting Card Set Data is generated among the Secure Data

Manager (Print Office) and the Control Components.

The following tables contain a summary of the keys and identifiers generated by either the Secure Data

Manger (Print Office) or the Control Components, during the execution of the Setup algorithm.

Secure Data Manager (Print Office)

Generates per Election Event:

- Secure Data Manager encryption key pair (𝒑𝒌𝑺𝑫𝑴, 𝒔𝒌𝑺𝑫𝑴)

Generates per Verification Card Set:

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Codes Secret Key (𝑪𝒔𝒌)

- Vote Cast Return Code Signer key pair (𝑽𝑪𝑪𝒔𝒑𝒌, 𝑽𝑪𝑪𝒔𝒔𝒌)

- Choice Return Codes Encryption Public key (𝒑𝒌𝑪𝑪𝑹) (this key is computed from the 𝑪𝑪𝑹𝒋

Choice Return Codes Encryption public keys)

- Verification Card Set Issuer key pair (𝑽𝑪𝑰𝒑𝒌, 𝑽𝑪𝑰𝒔𝒌)

Generates per Voter:

- Voting Card ID (𝒗𝒄𝒅𝒊𝒅)

- Verification Card ID (𝒗𝒄𝒊𝒅)

- Start Voting Key (𝑺𝑽𝑲𝒊𝒅)

- Ballot Casting Key (𝑩𝑪𝑲𝒊𝒅)

- Short Choice Return Codes (𝑪𝑪𝟏
𝒊𝒅, … , 𝑪𝑪𝒏

𝒊𝒅)

- Short Vote Cast Return Code (𝑽𝑪𝑪𝒊𝒅)

- Credential ID Authentication key pair (𝑲𝑪𝒊𝒅
𝒂 , 𝒌𝑪𝒊𝒅

𝒂)

- Credential ID Signing key pair (𝑲𝑪𝒊𝒅
𝒔 , 𝒌𝑪𝒊𝒅

𝒔)

- Verification Card key pair (𝑲𝒊𝒅, 𝒌𝒊𝒅)

Computes per Voter:

- pre-Choice Return Codes (𝒑𝑪𝟏
𝒊𝒅, … , 𝒑𝑪𝒏

𝒊𝒅)

- long Choice Return Codes (𝒍𝑪𝑪𝟏
𝒊𝒅, … , 𝒍𝑪𝑪𝒏

𝒊𝒅)

- Choice Return Code encryption symmetric key (𝒔𝒌𝒄𝒄𝟏
𝒊𝒅, … , 𝒔𝒌𝒄𝒄𝒏

𝒊𝒅)

- pre-Vote Cast Return Code (𝒑𝑽𝑪𝑪𝒊𝒅)

- long Vote Cast Return Code (𝒍𝑽𝑪𝑪𝒊𝒅)

- Vote Cast Return Code encryption symmetric key (𝒔𝒌𝒗𝒄𝒄𝒊𝒅)

Derives per Voter:

- Credential ID (𝒄𝒊𝒅)

- KeyStore symmetric encryption key (𝑲𝑺𝒌𝒆𝒚𝒊𝒅)

Table 19 - Keys and identifiers generated by the SDM during the Setup algorithm

Scytl sVote

Protocol Specifications

62

Control Component 𝑪𝑪𝑹𝒋

Generates per Verification Card Set:

- 𝑪𝑪𝑹𝒋 Choice Return Codes Encryption key pair (𝒑𝒌𝑪𝑪𝑹𝒋 , 𝒔𝒌𝑪𝑪𝑹𝒋)

- 𝑪𝑪𝑹𝒋 Choice Return Codes Generation key pair (𝒈𝒌𝒋
′
, 𝒌𝒋

′)

Derives per Voter:

- Voter Choice Return Codes generation key pair (𝑲𝒊𝒅
𝒋
, 𝒌𝒊𝒅

𝒋
)

- Vote Cast Return Code generation key pair (𝑲𝒄𝒊𝒅
𝒋
, 𝒌𝒄𝒊𝒅

𝒋
)

Table 20 - Keys and identifiers generated by the 𝑪𝑪𝑹𝒋 during the Setup algorithm

4.6.1 Generate SDM encryption key pair

The Secure Data Manager (Print Office) calls the ElGamal Key pair generation primitive and obtains the

SDM encryption key pair (𝑝𝑘𝑆𝐷𝑀, 𝑠𝑘𝑆𝐷𝑀) that will be used to encrypt sensitive information that is sent

between the Control Components and the SDM (Print Office).

4.6.2 Generate Verification Card Set Data

For each Ballot Box created, a set of voting cards is generated. This set of voting cards defines the

resources that will be assigned to the voter and used by them to cast their vote. Voters who use voting

cards from a specific set will cast votes into a specific Ballot Box. Correspondingly, a Verification Card

Set is generated, which is intended to group the information corresponding to the cast-as-intended

verification process for the voters in the same Voting Card and Verification Card sets, given that they

have one-to-one correspondence.

For each Verification Card Set:

1) Generate a Verification Card Set Identifier (Verification Card Set ID).

2) Generate the Codes Secret Key (𝐶𝑠𝑘):

o Call the Symmetric key generation primitive to generate a random secret key and set it

to be the Codes Secret Key (𝐶𝑠𝑘)

o Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

o Store the Codes Secret Key KeyStore and seal it with the password generated.

3) Generate the Vote Cast Return Code Signer keypair and certificate:

o Call the RSA Key pair generation primitive and obtain the Vote Cast Return Code Signer

key pair (𝑉𝐶𝐶𝑠𝑝𝑘, 𝑉𝐶𝐶𝑠𝑠𝑘)

o Call the X509 certificate generation primitive to generate a X.509 certificate containing

the Election Event ID (𝑒𝑒𝑖𝑑), the Verification Card Set ID (𝑣𝑐𝑠𝑖𝑑), the validity period and

the certificate name field values

Scytl sVote

Protocol Specifications

63

4.6.3 Create Voting Card Set

For each Ballot Box created, a set of voting cards is generated. This set of voting cards defines the

resources that will be assigned to the voter and used by them to cast their vote. Voters who use voting

cards from a specific set will cast votes into a specific Ballot Box.

• First, a unique Voting Card Set Identifier (𝑣𝑐𝑑𝑠𝑖𝑑) is generated.

Then, the following processes are executed:

• Generation of Start Voting Key (𝑆𝑉𝐾𝑖𝑑), Credential ID (𝑐𝑖𝑑) and KeyStore symmetric encryption

key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑)KeyStore.

• Generation of Credential Data.

• Generation of Verification Card Data.

• Verification Card Codes generation.

4.6.3.1 Generation of Start Voting Key, Credential ID and KeyStore Password

The Start Voting Key (𝑆𝑉𝐾𝑖𝑑) is the password entered by the voter in the Voter Portal. This password

will be used to authenticate the voter and to give him permission to cast a vote.

From this Start Voting Key (𝑆𝑉𝐾𝑖𝑑), two values are derived; the Credential ID (𝑐𝑖𝑑), which identifies a

set of resources (i.e., voting credentials) to be assigned to the holder of that start voting key, and the

KeyStore symmetric encryption key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑), which will be used to open the corresponding KeyStores.

For each Voting Card:

1. Generate a Voting Card ID (𝑣𝑐𝑑𝑖𝑑).

2. Call the Random value generation primitive to generate the Start Voting Key (𝑆𝑉𝐾𝑖𝑑) as a

random value of length 20 chars in base 32.

3. Call the Password-based key derivation function with the following inputs:

o Password: Start Voting Key (𝑆𝑉𝐾𝑖𝑑).

o Salt: concatenation of the string ‘credentialid’ and the Election Event ID (𝑒𝑒𝑖𝑑).

The result is the Credential ID (𝑐𝑖𝑑).

4. Call the Password-based key derivation function with the following inputs:

o Password: Start Voting Key (𝑆𝑉𝐾𝑖𝑑).

o Salt: concatenation of the string ‘KeyStorepin’ and the Election Event ID (𝑒𝑒𝑖𝑑).

The result is the KeyStore symmetric encryption key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑).

After all the Voting Card have been generated, the following list of pairs are created:

• (𝑐𝑖𝑑 – 𝐾𝑆𝑘𝑒𝑦𝑖𝑑)

Scytl sVote

Protocol Specifications

64

• (𝑐𝑖𝑑 – 𝑆𝑉𝐾𝑖𝑑)

4.6.3.1.1 Extended authentication

For the voter to be authenticated, it is also possible to require additional authentication values and a

challenge question (for instance, the year of birth). The voter will introduce the Start Voting Key (𝑆𝑉𝐾𝑖𝑑)

in the Voter Portal and this extra information.

In this situation, additional information will be generated besides the Start Voting key (𝑆𝑉𝐾𝑖𝑑), the

Credential ID (𝑐𝑖𝑑) and the KeyStore password (𝐾𝑆𝑘𝑒𝑦𝑖𝑑) . In order to generate this additional

information, the following data should be provided:

• List of pairs (VoterAlias – Challenge answer)

• Number of additional authentication values and its length.

• List of pairs (𝑐𝑖𝑑 – 𝑆𝑉𝐾𝑖𝑑), computed in the previous step.

Then, for each Voting Card:

1) Relate the Voting Card and the Start Voting Key (𝑆𝑉𝐾𝑖𝑑) to a pair of (VoterAlias – Challenge

answer).

2) Generate an Authentication Key from the additional authentication values. In case no additional

information is required to be authenticated, call the Random value generation primitive to

generate a random password of length 20 chars in base 32. The result will be the Authentication

Key.

3) Call the Password-based key derivation function with the following inputs:

o Password: Authentication Key value.

o Salt: concatenation of the string ‘authid’ and the Election Event ID (𝑒𝑒𝑖𝑑).

The result is the Authentication ID.

4) Call the Password-based key derivation function with the following inputs:

o Password: Authentication Key value.

o Salt: concatenation of the string ‘authpassword’ and the Election Event ID (𝑒𝑒𝑖𝑑).

The result is the password.

5) Call the Symmetric encryption primitive to encrypt the Start Voting Key (𝑆𝑉𝐾𝑖𝑑) using the

derived password.

6) Call the Password-based key derivation function with the following inputs:

o Password: Challenge Answer value.

o Salt: call the Random value generation primitive to compute a random salt of 256 bits.

Scytl sVote

Protocol Specifications

65

After the extended authentication information for all the generated Voting Cards, the following list of

pairs are created:

• (Credential ID (𝑐𝑖𝑑) – Authentication ID).

• (VoterAlias – Authentication ID).

• (Authentication ID – Authentication Key).

• (Authentication ID – PBKDF2(ChallengeAnswer, Salt) – Salt – Encrypted (𝑆𝑉𝐾𝑖𝑑)).

4.6.3.2 Generation of Credential Data

Generation of credential data, which is needed to authenticate into the platform and cast a vote. A

Credential Data item is associated to one Voting Card.

For each Credential ID (𝑐𝑖𝑑):

1) Call twice the RSA Key pair generation primitive and obtain the:

o Credential ID Authentication key pair (𝐾𝐶𝑖𝑑
𝑎 , 𝑘𝐶𝑖𝑑

𝑎)

o Credential ID Signing key pair (𝐾𝐶𝑖𝑑
𝑠 , 𝑘𝐶𝑖𝑑

𝑠)

2) Call twice the X509 certificate generationprimitive to generate two X.509 certificates, one for

each RSA public key, containing the Election Event ID (𝑒𝑒𝑖𝑑), the Credential ID (𝑐𝑖𝑑), the validity

period and the certificate name field values. One will be intended for authentication, and the

other for digital signatures. Therefore, include ‘Auth’ or ‘Sign’ respectively in the certificate field.

3) Digitally sign the certificates using the Credentials CA private key (𝐶𝐶𝐴𝑠𝑘).

4) Store the private RSA keys and the certificates into a KeyStore and seal it with the

corresponding KeyStore password (𝐾𝑆𝑘𝑒𝑦𝑖𝑑).

Generate the Credential Data structure with the following information:

Credential Data

- List of pairs (Credential ID (𝒄𝒊𝒅) - Credential KeyStore), where each KeyStore contains:

- Certificate for the authentication public key

- Certificate for the signing public key

- Credential ID Authentication private key (𝒌𝑪𝒊𝒅
𝒂)

- Credential ID Signing private key (𝒌𝑪𝒊𝒅
𝒔)

Table 21 - Credential Data

4.6.3.3 Generation of Verification Card Data

Generation of the data that will be needed to compute the Encrypted vote and the Confirmation message

at the voting client context during the voting phase. This information is generated both in the Control

Components and in the Secure Data Manager (Print Office).

Scytl sVote

Protocol Specifications

66

For each Verification Card Set ID (𝑣𝑐𝑠𝑖𝑑), each Control Component 𝐶𝐶𝑅𝑗:

1) Generates the 𝐶𝐶𝑅𝑗 Choice Return Codes Encryption key pair:

o Calls the ElGamal Key pair generation primitive and generates a key pair with 𝜓

components, where 𝜓 is the maximum number of options a voter can select:

𝑝𝑘𝐶𝐶𝑅𝑗 : {(𝑝𝑘𝐶𝐶𝑅𝑗
(1) , 𝑠𝑘𝐶𝐶𝑅𝑗

(1)) , … , (𝑝𝑘𝐶𝐶𝑅𝑗
(𝜓)

, 𝑠𝑘𝐶𝐶𝑅𝑗
(𝜓)

)}

where 𝑝𝑘𝐶𝐶𝑅𝑗
(𝑖) = 𝑔

𝑠𝑘𝐶𝐶𝑅𝑗
(𝑖)

.

o The public part of every key pair is signed together with the Verification Card Set ID

(𝑣𝑐𝑠𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑), using the 𝐶𝐶𝑅𝑗 signing private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

o Encrypts the private key using the 𝐶𝐶𝑅𝑗 encryption public key.

2) Generates the 𝐶𝐶𝑅𝑗 Choice Return Codes Generation key pair:

o Calls the ElGamal Key pair generation primitive and generates their own key pair:

(𝑔𝑘𝑗
′

, 𝑘𝑗
′).

o Encrypts the private key using the 𝐶𝐶𝑅𝑗 encryption public key (generated in section

3.5.3).

3) Sends the 𝐶𝐶𝑅𝑗 Choice Return Codes Encryption public key: (𝑝𝑘𝐶𝐶𝑅𝑗
(1) , … , 𝑝𝑘𝐶𝐶𝑅𝑗

(𝜓)
) and its

signature to the Secure Data Manager (Print Office).

For each Verification Card Set ID (𝑣𝑐𝑠𝑖𝑑), the Secure Data Manager (Print Office):

1) Receives the following information from the Control Components:

o 𝐶𝐶𝑅1 Choice Return Codes Encryption public key: (𝑝𝑘𝐶𝐶𝑅1
(1) , … , 𝑝𝑘𝐶𝐶𝑅1

(𝜓)
) and its

signature.

o 𝐶𝐶𝑅2 Choice Return Codes Encryption public key: (𝑝𝑘𝐶𝐶𝑅2
(1) , … , 𝑝𝑘𝐶𝐶𝑅2

(𝜓)
) and its

signature.

o 𝐶𝐶𝑅3 Choice Return Codes Encryption public key: (𝑝𝑘𝐶𝐶𝑅3
(1) , … , 𝑝𝑘𝐶𝐶𝑅3

(𝜓)
) and its

signature.

o 𝐶𝐶𝑅4 Choice Return Codes Encryption public key: (𝑝𝑘𝐶𝐶𝑅4
(1) , … , 𝑝𝑘𝐶𝐶𝑅4

(𝜓)
) and its

signature.

2) Generates a Verification Card Set Issuer keypair:

o Call the RSA Key pair generation primitive and obtain the Verification Card Set Issuer

key pair (𝑉𝐶𝐼𝑝𝑘, 𝑉𝐶𝐼𝑠𝑘).

Scytl sVote

Protocol Specifications

67

o Call the X509 certificate generation primitive to generate a X.509 certificate for the RSA

public key, containing the Election Event ID (𝑒𝑒𝑖𝑑), the Verification Card Set ID (𝑣𝑐𝑠𝑖𝑑),

the validity period and the certificate name field values.

3) Verifies the signatures of the 𝐶𝐶𝑅𝑗 Choice Return Codes Encryption public keys

(𝑝𝑘𝐶𝐶𝑅1 , … , 𝑝𝑘𝐶𝐶𝑅4) and multiplies them to obtain the Choice Return Codes Encryption public key

(𝑝𝑘𝐶𝐶𝑅):

{

 𝑝𝑘𝐶𝐶𝑅
(1)

= 𝑝𝑘𝐶𝐶𝑅1
(1) · … · 𝑝𝑘𝐶𝐶𝑅4

(1) = 𝑔
𝑠𝑘𝐶𝐶𝑅1
(1)

+⋯+𝑠𝑘𝐶𝐶𝑅4
(1)

⋮

𝑝𝑘𝐶𝐶𝑅
(𝜓)

= 𝑝𝑘𝐶𝐶𝑅1
(𝜓)

· … · 𝑝𝑘𝐶𝐶𝑅4
(𝜓)

= 𝑔
𝑠𝑘𝐶𝐶𝑅1
(𝜓)

+⋯+𝑠𝑘𝐶𝐶𝑅4
(𝜓)

 The corresponding private key will be 𝑠𝑘𝐶𝐶𝑅 = (𝑠𝑘𝐶𝐶𝑅
(1) , … , 𝑠𝑘𝐶𝐶𝑅

(𝜓)
).

4) Stores the Choice Return Codes Encryption public key (𝑝𝑘𝐶𝐶𝑅), the individual CCs Choice

Return Codes public keys (𝑝𝑘𝐶𝐶𝑅1 , … , 𝑝𝑘𝐶𝐶𝑅4) and their signatures. This information will be

uploaded later to the voting channel.

5) For each Credential ID (𝑐𝑖𝑑) in the Verification Card Set, generate a Verification Card Data item

in the following way:

o Generates a random identifier Verification Card ID (𝑣𝑐𝑖𝑑).

o Calls the ElGamal Key pair generation primitive using the encryption parameters

provided and obtain the Verification Card key pair: (𝐾𝑖𝑑 , 𝑘𝑖𝑑).

o Calls the Digital signature generation primitive to sign the Verification Card public key

(𝐾𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and the Verification Card ID (𝑣𝑐𝑖𝑑) using the

Verification Card Set Issuer private key (𝑉𝐶𝐼𝑠𝑘).

o Stores the Verification Card private key (𝑘𝑖𝑑) into a KeyStore (𝑉𝐶𝑘𝑠𝑖𝑑) and seal it with

the corresponding password (𝐾𝑆𝑘𝑒𝑦𝑖𝑑).

6) Generates the Verification Card Data set:

Verification Card Data

Contains one row per Verification Card ID with the following information:

- Verification Card ID (𝒗𝒄𝒊𝒅)

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Election Event ID (𝒆𝒆𝒊𝒅)

- Verification Card KeyStore (𝑽𝑪𝒌𝒔𝒊𝒅), containing the Verification Card private key (𝒌𝒊𝒅)

- Signed Verification Card public key (𝑲𝒊𝒅)

Table 22 - Verification Card Data

7) Once all the Verification Card Data items have been generated, creates the following list of pairs

Scytl sVote

Protocol Specifications

68

o (Verification Card private key (𝑘𝑖𝑑) - Verification Card ID (𝑣𝑐𝑖𝑑)).

o (Verification Card ID (𝑣𝑐𝑖𝑑) – Voting Card ID (𝑣𝑐𝑑𝑖𝑑)).

4.6.3.4 Verification Card Codes generation

In this step, the codes to be printed in the verification card for the voter are generated. These codes are

the following:

• Choice Return Codes (𝐶𝐶1
𝑖𝑑 , … , 𝐶𝐶𝑛

𝑖𝑑) , which are linked to a ballot’s set of voting options

(𝑣1, … , 𝑣𝑛),

• Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑), and

• Vote Cast Return Code (𝑉𝐶𝐶𝑖𝑑) which are used to confirm and check the confirmation of the

vote casting.

Additionally, a Codes Mapping Table is created to provide the link between the voting options (𝑣1, … , 𝑣𝑛)

and the Choice Return Codes (𝐶𝐶1
𝑖𝑑 , … , 𝐶𝐶𝑛

𝑖𝑑), and between the Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑) and the

Vote Cast Return Code (𝑉𝐶𝐶𝑖𝑑).

The Verification Card Codes and the corresponding Mapping Table are generated for a specific ballot.

The process below is performed for all the Verification Card IDs (𝑣𝑐𝑖𝑑) in a specific Verification Card Set

(𝑣𝑐𝑠𝑖𝑑) and is an interaction between the Secure Data Manager (Print Office) and the Control

Components 𝐶𝐶𝑅𝑗.

For each Verification Card Set (𝑣𝑐𝑠𝑖𝑑), the SDM (Print Office):

1) Calls the ElGamal encryption primitive as many times as voting options in the ballot, and using

the Secure Data Manager public key (𝑝𝑘𝑆𝐷𝑀), the output is:

{𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1), 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2), … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)}

2) For each Verification Card ID (𝑣𝑐𝑖𝑑) in the Verification Card Set:

o Calls the Random value generation primitive to generate a random 8-digit value and

computes from it a one-digit checksum using the EAN13 standard. Let the

concatenation of the two values be the Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑).

o Squares the 𝐵𝐶𝐾𝑖𝑑 and computes the exponentiation to the Verification Card private

key 𝑘𝑖𝑑:

𝐶𝑀𝑖𝑑 = (𝐵𝐶𝐾𝑖𝑑)2𝑘𝑖𝑑

o Compute a hash of 𝐶𝑀𝑖𝑑 and encrypts the squared result calling the ElGamal

encryption primitive with the SDM encryption public key 𝑝𝑘𝑆𝐷𝑀:

𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2).

Scytl sVote

Protocol Specifications

69

3) Calls the Digital signature generation primitive to sign the encrypted prime numbers and the list

of encrypted 𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2 using the Administration Board private key (𝐴𝐵𝑠𝑘) and sends the

signed information to the Control Components.

For each the Verification Card Set, each Control Component:

1) Receives from the SDM (Print Office) the following information:

o Encrypted prime numbers: {𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1), 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2), … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)}

o List of Encrypted hashes: 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2) corresponding to each Verification

card ID (𝑣𝑐𝑖𝑑) in the Verification Card Set.

o Signature of encrypted prime numbers and encrypted 𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2.

o Administration Board X509 Certificate and Tenant CA X509 Certificate.

o List of Verification Card IDs (𝑣𝑐𝑖𝑑) included in the Verification Card Set.

2) For each Verification Card ID (𝑣𝑐𝑖𝑑), computes the following values:

o The derivation of the Voter Choice Return Code generation private key (𝑘𝑖𝑑
𝑗
) from the

𝐶𝐶𝑅𝑗 Choice Return Codes generation private key (𝑘𝑗
′) and the Verification Card ID

(𝑣𝑐𝑖𝑑):

▪ Compute 𝑘𝑖𝑑
𝑗
= 𝐾𝐷𝐹(𝑣𝑐𝑖𝑑||𝑘𝑗

′, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ) calling the Key Derivation Function:

KDF1 specification primitive.

▪ Truncate the result to have 2047 bits.

▪ Check that 1 ≤ 𝑘𝑖𝑑
𝑗
≤ 𝑞 − 1

▪ If the derived value is equal or greater than 𝑞, compute again a derivation but

using as input the derived value 𝐾𝐷𝐹(𝑘𝑖𝑑
𝑗
, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ).

▪ 𝑘𝑖𝑑
𝑗

 is the Voter Choice Return Code generation private key.

▪ Compute the Voter Choice Return Code generation public key (𝐾𝑖𝑑
𝑗
) associated

to the Voter Choice Return Code generation private key (𝑘𝑖𝑑
𝑗
) as the

exponentiation of the generator 𝑔 to 𝑘𝑖𝑑
𝑗

: 𝐾𝑖𝑑
𝑗
= 𝑔𝑘𝑖𝑑

𝑗

.

Notice that as 𝑘𝑖𝑑
𝑗

 is computed using the Verification Card ID(𝑣𝑐𝑖𝑑), it is specific per

voter.

o The exponentiation of 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1), 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2), … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛) to the corresponding

Voter Choice Return Code generation private key (𝑘𝑖𝑑
𝑗
):

{𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)
𝑘𝑖𝑑
𝑗

, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2)
𝑘𝑖𝑑
𝑗

, … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)
𝑘𝑖𝑑
𝑗

}

Scytl sVote

Protocol Specifications

70

o Call the Exponentiation proof generation primitive to compute a proof of knowledge of

the exponent 𝑘𝑗
𝑖𝑑. The inputs of the primitive are the following:

▪ Base elements (group elements): [𝑔, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1), 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2), … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)]

▪ Exponents: [𝑘𝑖𝑑
𝑗
]

▪ Public input (group elements):

[𝐾𝑖𝑑
𝑗
, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)

𝑘𝑖𝑑
𝑗

, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2)
𝑘𝑖𝑑
𝑗

, … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)
𝑘𝑖𝑑
𝑗

]

▪ Additional information “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓”

▪ Mathematical group (𝑝, 𝑞, 𝑔)

The proof is logged to be validated during the verification phase.

o The derivation of the Voter Vote Cast Return Code generation private key (𝑘𝑐𝑖𝑑
𝑗
) from

the 𝐶𝐶𝑅𝑗 Choice Return Codes generation private key (𝑘𝑗
′) and the Verification Card ID,

the confirm text padding and the Verification Card ID (𝑣𝑐𝑖𝑑):

▪ Compute 𝑘𝑐𝑖𝑑
𝑗
= 𝐾𝐷𝐹(𝑣𝑐𝑖𝑑||confirm||𝑘𝑗

′, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ) calling the Key Derivation

Function: KDF1 specification primitive.

▪ Truncate the result to have 2047 bits.

▪ Check that 1 ≤ 𝑘𝑐𝑖𝑑
𝑗
≤ 𝑞 − 1

▪ If the derived value is equal or greater than 𝑞, compute again a derivation but

using as input the derived value 𝐾𝐷𝐹(𝑘𝑐𝑖𝑑
𝑗
, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ).

▪ 𝑘𝑐𝑖𝑑
𝑗

 is the Voter Vote Cast Return Code generation private key.

▪ Compute the Voter Vote Cast Return Code generation public key associated

to the Voter Vote Cast Return Code generation private key (𝑘𝑐𝑖𝑑
𝑗
) as the

exponentiation of the generator 𝑔 to 𝑘𝑐𝑖𝑑
𝑗

: 𝐾𝑐𝑖𝑑
𝑗
= 𝑔𝑘𝑐𝑖𝑑

𝑗

.

Notice that as 𝑘𝑐𝑖𝑑
𝑗

 is computed using the Verification Card ID (𝑣𝑐𝑖𝑑), it is specific per

voter.

o The exponentiation of 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2) to the corresponding 𝑘𝑐𝑖𝑑

𝑗
.

𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)𝑘𝑐𝑖𝑑

𝑗

o Call the Exponentiation proof generation primitive to compute a proof of knowledge of

the exponent 𝑘𝑐𝑖𝑑
𝑗

. The inputs of the primitive are the following:

▪ Base elements (group elements): [𝑔, 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)]

Scytl sVote

Protocol Specifications

71

▪ Exponents: [𝑘𝑐𝑖𝑑
𝑗
]

▪ Public input (group elements): [𝐾𝑐𝑖𝑑
𝑗
, 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀

𝑖𝑑)2)𝑘𝑐𝑖𝑑
𝑗

]

▪ Additional information “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓"

▪ Mathematical group (𝑝, 𝑞, 𝑔)

The proof is logged to be validated during the verification phase.

o Calls the Digital signature generation primitive to sign the result of the exponentiations

and the Voter Choice Return Code generation public key (𝐾𝑐𝑖𝑑
𝑗

), using the 𝐶𝐶𝑅𝑗 signing

private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

3) Sends the computations signed to the SDM (Print Office)

For each Verification Card Set, the SDM (Print Office):

1) Receives from each Control Component the following information (notice that every element of

the list mentioned below corresponds to one Verification Card ID (𝑣𝑐𝑖𝑑) of the Verification Card

Set):

o List of exponentiated encrypted primer numbers:

{𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)
𝑘𝑖𝑑
𝑗

, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2)
𝑘𝑖𝑑
𝑗

, … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)
𝑘𝑖𝑑
𝑗

}

o List of exponentiated encrypted squared hashes of Confirmation Messages:

𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)𝑘𝑖𝑑

𝑗

o List of Voter Choice Return Code generation public key: 𝐾𝑖𝑑
𝑗

o List of Voter Vote Cast Return Code generation public key: 𝐾𝑐𝑖𝑑
𝑗

o Signature of the information detailed above.

And does the following actions:

o Verify the signature of the received information using the 𝐶𝐶𝑅𝑗 signing certificate. Store

the public keys to be uploaded later to the Vote Verification Context. The signatures of

these keys are also kept by the SDM (which is considered as part of the Bulletin Board)

to be used by the Verifier during an audit process.

o For each Verification Card ID (𝑣𝑐𝑖𝑑) in the Verification Card Set:

▪ Call the Random value generation primitive to compute a 4-digit random (short)

Choice Return Code (𝐶𝐶𝑖
𝑖𝑑) for each voting option in the ballot.

▪ Multiply the values received from the control components:

Scytl sVote

Protocol Specifications

72

{∏𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)
𝑘𝑖𝑑
𝑗

4

𝑗=1

, … ,∏𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)
𝑘𝑖𝑑
𝑗

4

𝑗=1

}

▪ Compute the exponentiation of each element above to the Verification card

private key (𝑘𝑖𝑑):

{𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)
𝑘𝑖𝑑·∑ 𝑘𝑖𝑑

𝑗4
𝑗=1 , … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)

𝑘𝑖𝑑·∑ 𝑘𝑖𝑑
𝑗4

𝑗=1 }

▪ For each one of the ciphertexts computed in the previous steps, call the

ElGamal decryption primitive with input the ciphertext and the Secure Data

Manager private key (𝑠𝑘𝑆𝐷𝑀). Finally, obtain the pre-Choice Return Codes

(𝑝𝐶1
𝑖𝑑 , … , 𝑝𝐶𝑛

𝑖𝑑) = (𝑣1
𝑘, … , 𝑣𝑛

𝑘) where 𝑣𝑖
𝑘 is:

𝑝𝐶𝑖
𝑖𝑑 = 𝑣𝑖

𝑘 = 𝑣
𝑖

𝑘𝑖𝑑·∑ 𝑘𝑖𝑑
𝑗4

𝑗=1

▪ For each pre-Choice Return Code 𝑝𝐶𝑖
𝑖𝑑 , concatenate it with the Verification

Card ID (𝑣𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and the corresponding voting

option attributes with the flag “correctness = true”. Call the Hash generation

primitive with input the concatenated value. The result is the long Choice Return

Code:

𝑙𝐶𝐶𝑖
𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝑝𝐶𝑖

𝑖𝑑||𝑣𝑐𝑖𝑑||𝑒𝑒𝑖𝑑||{𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠})

▪ For each long Choice Return Code (𝑙𝐶𝐶𝑖
𝑖𝑑), concatenate it with the Codes

Secret Key (𝐶𝑠𝑘), compute a hash of the result and call the Key Derivation

Function: KDF1 specification primitive to generate Choice Return Code

encryption symmetric key :

𝑠𝑘𝑐𝑐𝑖
𝑖𝑑 = 𝐾𝐷𝐹(𝐻𝑎𝑠ℎ(𝑙𝐶𝐶𝑖

𝑖𝑑||𝐶𝑠𝑘), 256 𝑏𝑖𝑡𝑠)

▪ Call the Symmetric encryption primitive to encrypt the corresponding random

Choice Return Code (𝐶𝐶𝑖
𝑖𝑑) with the symmetric key 𝑠𝑘𝑐𝑐𝑖

𝑖𝑑 generated in the

step before: 𝐸(𝐶𝐶𝑖
𝑖𝑑 , 𝑠𝑘𝑐𝑐𝑖

𝑖𝑑).

▪ Call the Hash generation primitive for each long choice return 𝑙𝐶𝐶𝑖
𝑖𝑑 and create

an entry in the table containing the encrypted Choice Return Code, where the

entry key is the Hash of the long return code 𝑙𝐶𝐶𝑖
𝑖𝑑 : 𝐻𝑎𝑠ℎ(𝑙𝐶𝐶𝑖

𝑖𝑑) −

𝐸𝑛𝑐(𝐶𝐶𝑖
𝑖𝑑 , 𝑠𝑘𝑐𝑐𝑖

𝑖𝑑).

▪ Call the Random value generation primitive to compute an 8-digit random Vote

Cast Return Code (𝑉𝐶𝐶𝑖𝑑).

▪ Call the Digital signature generation primitive to sign the Vote Cast Return Code

(𝑉𝐶𝐶𝑖𝑑) and the Verification Card ID (𝑣𝑐𝑖𝑑) using the Vote Cast Return Code

Signer private key (𝑉𝐶𝐶𝑠𝑠𝑘).

Scytl sVote

Protocol Specifications

73

𝑠𝑉𝐶𝐶𝑖𝑑 = 𝑆𝑖𝑔𝑛(𝑉𝐶𝐶, 𝑉𝐶𝐶𝑠𝑠𝑘)

▪ Multiply the values received from the Control Components and obtain the

encrypted pre-Vote Cast Return Code:

∏𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)𝑘𝑐𝑖𝑑

𝑗
4

𝑗=1

= 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ((𝐵𝐶𝐾
𝑖𝑑)2𝑘𝑖𝑑)2)∑ 𝑘𝑐𝑖𝑑

𝑗4
𝑗=1

= 𝐸𝑝𝑘𝑆𝐷𝑀(𝑝𝑉𝐶𝐶
𝑖𝑑)

▪ Call the ElGamal decryption primitive to decrypt the pre-Vote Cast Return

Code: 𝐷𝑠𝑘𝑆𝐷𝑀(𝐸𝑝𝑘𝑆𝐷𝑀(𝑝𝑉𝐶𝐶
𝑖𝑑)).

▪ Call the Hash generation primitive with input the concatenation of the pre-Vote

Cast Return Code with the Verification Card ID (𝑣𝑐𝑖𝑑) and the Election Event

ID (𝑒𝑒𝑖𝑑). The result is the long Vote Cast Return Code:

𝑙𝑉𝐶𝐶𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝑝𝑉𝐶𝐶𝑖𝑑||𝑉𝐶𝑖𝑑||𝐸𝐸𝐼𝐷)

▪ Concatenate the long Vote Cast Return Code (𝑙𝑉𝐶𝐶𝑖𝑑) with the Codes Secret

Key (𝐶𝑠𝑘), and compute a hash of the result. Call the Key Derivation Function:

KDF1 specification primitive to generate Vote Cast Return Code encryption

symmetric key : 𝑠𝑘𝑣𝑐𝑐𝑖𝑑 = 𝐾𝐷𝐹(𝐻𝑎𝑠ℎ(𝑙𝑉𝐶𝐶𝑖𝑑||𝐶𝑠𝑘), 256 𝑏𝑖𝑡𝑠).

▪ Call the Symmetric encryption primitive to encrypt the 𝑉𝐶𝐶𝑖𝑑 and the signed

𝑉𝐶𝐶𝑖𝑑 (𝑠𝑉𝐶𝐶𝑖𝑑) using the symmetric key: 𝐸(𝑉𝐶𝐶𝑖𝑑||𝑠𝑉𝐶𝐶𝑖𝑑 , 𝑠𝑘𝑣𝑐𝑐
𝑖𝑑).

▪ Call the Hash generation primitive with input the 𝑙𝑉𝐶𝐶𝑖𝑑 and create an entry in

the table containing the encrypted 𝑉𝐶𝐶𝑖𝑑and signed 𝑉𝐶𝐶𝑖𝑑, where the entry key

is the Hash of the long Vote Cast Return Code 𝑙𝑉𝐶𝐶𝑖𝑑 : 𝐻𝑎𝑠ℎ(𝑙𝑉𝐶𝐶𝑖𝑑) −

𝐸𝑛𝑐 ((𝑉𝐶𝐶𝑖𝑑 ||𝑠𝑉𝐶𝐶𝑖𝑑), 𝑠𝑘𝑣𝑐𝑐
𝑖𝑑).

Once all the computations are finished, the Codes Mapping Table contains entries for each of the

Verification Card IDs in the Verification Card Set. These entries correspond to the Choice Return Codes

and the Vote Cast Return Code assigned to each Verification Card ID (𝑣𝑐𝑖𝑑).

Additionally, the following data structure is created for each one of the Verification Card IDs in the

Verification Card Set.

Scytl sVote

Protocol Specifications

74

Verification Card Codes

- Verification Card ID (𝒗𝒄𝒊𝒅)

- Election Event ID (𝒆𝒆𝒊𝒅)

- List of [Choice Return Codes (𝑪𝑪𝟏
𝒊𝒅, … , 𝑪𝑪𝒏

𝒊𝒅) – ballot voting option identifiers (𝒗𝟏, … , 𝒗𝒏)]

- Ballot Casting Key (𝑩𝑪𝑲𝒊𝒅).

- Vote Cast Return Code (𝑽𝑪𝑪𝒊𝒅)

Table 23 - Verification Card Codes

4.6.4 Verify Setup

During Setup the auditors must verify, for each Verification Card ID (𝑣𝑐𝑖𝑑), that the exponentiation proofs

computed by the Control Components during the exponentiation of the encrypted prime numbers and

the encrypted hashes of the confirmation messages, are correct. The following information should be

retrieved in order to perform the validations:

• Exponentiation proofs stored in the Control Components Secure Loggers.

• The encrypted prime numbers {𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1), 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2), … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)}.

• For each Verification Card ID (𝑣𝑐𝑖𝑑):

o 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)

o 𝐸𝑝𝑘𝑆𝐷𝑀(𝐻𝑎𝑠ℎ(𝐶𝑀
𝑖𝑑)2)𝑘𝑐𝑖𝑑

𝑗

o Exponentiated encrypted primer numbers

{𝐸𝑝𝑘𝑆𝐷𝑀(𝑣1)
𝑘𝑖𝑑
𝑗

, 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣2)
𝑘𝑖𝑑
𝑗

, … , 𝐸𝑝𝑘𝑆𝐷𝑀(𝑣𝑛)
𝑘𝑖𝑑
𝑗

}

o 𝐶𝐶𝑅1 Voter Choice Return Code generation public key (𝐾𝑖𝑑
1)

o 𝐶𝐶𝑅2 Voter Choice Return Code generation public key (𝐾𝑖𝑑
2)

o 𝐶𝐶𝑅3 Voter Choice Return Code generation public key (𝐾𝑖𝑑
3)

o 𝐶𝐶𝑅4 Voter Choice Return Code generation public key (𝐾𝑖𝑑
4)

o 𝐶𝐶𝑅1 Voter Vote Cast Return Code generation public key (𝐾𝑐𝑖𝑑
1)

o 𝐶𝐶𝑅2 Voter Vote Cast Return Code generation public key (𝐾𝑐𝑖𝑑
2)

o 𝐶𝐶𝑅3 Voter Vote Cast Return Code generation public key (𝐾𝑐𝑖𝑑
3)

o 𝐶𝐶𝑅4 Voter Vote Cast Return Code generation public key (𝐾𝑐𝑖𝑑
4)

If the validation of some of these proofs fails, the process is stopped. Otherwise, the configuration

process continues as expected.

Scytl sVote

Protocol Specifications

75

4.7 Create printing information

The information to be printed in each of the voting cards that will be provided to the voters before starting

the election, is the following:

• Verification Card Codes (see Table 23 - Verification Card Codes).

• Ballot (see Table 13 - Ballot).

• Start Voting Key (𝑆𝑉𝐾𝑖𝑑).

4.7.1 Printing Information if extended authentication is used

If the extended authentication is used, the Voter Alias are included as part of the information to be

printed in each voting card. In addition, the Start Voting Key (𝑆𝑉𝐾𝑖𝑑) is substituted by the Authentication

Key.

4.8 Generation of Vote Verification Context Information

It generates the set of configuration information related to a Verification Card Set that should be stored

in the Vote Verification Context. The set of information is grouped as follows:

• Verification Card Data (see Table 22 - Verification Card Data).

• Verification Card Set Control Components Data:

Verification Card Set Control Components Data

- Election Event ID (𝒆𝒆𝒊𝒅)

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- List of:

- Verification Card ID (𝒗𝒄𝒊𝒅)

- 𝑪𝑪𝑹𝟏 Voter Choice Return Code generation public key (𝑲𝒊𝒅
𝟏)

- 𝑪𝑪𝑹𝟐 Voter Choice Return Code generation public key (𝑲𝒊𝒅
𝟐)

- 𝑪𝑪𝑹𝟑 Voter Choice Return Code generation public key (𝑲𝒊𝒅
𝟑)

- 𝑪𝑪𝑹𝟒 Voter Choice Return Code generation public key (𝑲𝒊𝒅
𝟒)

- 𝑪𝑪𝑹𝟏 Voter Vote Cast Return Code generation public key (𝑲𝒄𝒊𝒅
𝟏)

- 𝑪𝑪𝑹𝟐 Voter Vote Cast Return Code generation public key (𝑲𝒄𝒊𝒅
𝟐)

- 𝑪𝑪𝑹𝟑 Voter Vote Cast Return Code generation public key (𝑲𝒄𝒊𝒅
𝟑)

- 𝑪𝑪𝑹𝟒 Voter Vote Cast Return Code generation public key (𝑲𝒄𝒊𝒅
𝟒)

Table 24 - Verification Card Set Control Component Data

• Verification Card Set Data:

Scytl sVote

Protocol Specifications

76

Verification Card Set Data

- Election Event ID (𝒆𝒆𝒊𝒅)

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Choice Return Codes Encryption public key (𝒑𝒌𝑪𝑪𝑹)

- Verification Card Set Issuer Certificate

- Vote Cast Return Code Signer Certificate

Table 25 - Verification Card Set Data

• Codes Mapping Table Context Data:

Codes Mapping Table Context Data

- Set of (Verification Card ID (𝒗𝒄𝒊𝒅) – Codes Mapping Tables)

Table 26 - Codes Mapping Table Context Data

• Vote Verification Context Data:

Vote Verification Context Data

- Election Event ID (𝒆𝒆𝒊𝒅)

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Signed 𝑪𝑪𝑹𝟏 Choice Return Codes Encryption public key (𝒑𝒌𝑪𝑪𝑹𝟏)

- Signed 𝑪𝑪𝑹𝟐 Choice Return Codes Encryption public key (𝒑𝒌𝑪𝑪𝑹𝟐)

- Signed 𝑪𝑪𝑹𝟑 Choice Return Codes Encryption public key (𝒑𝒌𝑪𝑪𝑹𝟑)

- Signed 𝑪𝑪𝑹𝟒 Choice Return Codes Encryption public key (𝒑𝒌𝑪𝑪𝑹𝟒)

- Codes Secret Key KeyStore

- Codes Secret Key password (encrypted with the Vote Verification Context System public key)

- Encryption parameters

- Election Key ID

Table 27 - Vote Verification Context Data

4.9 Generation of Voter Materials Context Information

It generates the set of configuration information related to a Voting Card Set that should be stored in the

Voter Material Context. The set of information is the following:

• Voter Information: list of resource identifiers that will be assigned to a voter using a specific

Voting Card

Scytl sVote

Protocol Specifications

77

Voter Information

Contains one row per Verification Card ID (𝒗𝒄𝒊𝒅) with the following information:

- Election Event ID (𝒆𝒆𝒊𝒅)

- Ballot ID (𝒃𝒊𝒅)

- Ballot Box ID (𝒃𝒃𝒊𝒅)

- Voting Card Set ID (𝒗𝒄𝒅𝒔𝒊𝒅)

- Voting Card ID (𝒗𝒄𝒅𝒊𝒅)

- Credential ID (𝒄𝒊𝒅)

- Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Verification Card ID (𝒗𝒄𝒊𝒅)

Table 28 - Voter Information

• Credential Data: credential data associated to each Voting Card, to be provided to the voter

during the authentication phase (see Table 21 - Credential Data)

4.10 Generation of Extended Authentication Context Information

Generates the set of configuration data related to every Voting Card that should be stored in the

Extended Authentication Context.

Extended Authentication Information

- Authentication ID

- Election Event ID (𝒆𝒆𝒊𝒅)

- Credential ID (𝒄𝒊𝒅)

- PBKDF2(ChallengeAnswer, Salt)

- Salt

- Encrypted Start Voting Key

Table 29 - Extended Authentication Data

4.11 Password protection

The election KeyStores password should be encrypted using the corresponding system context public

keys. Before starting the election, the system context KeyStores passwords will be manually introduced

or requested to the password manager, to open the KeyStores that contains the private keys to decrypt

the election KeyStores passwords.

• Ballot box KeyStore password encrypted with the Tenant Election Information Context System

public key (𝑇𝐸𝐼𝑝𝑘).

• Authentication Token Signer KeyStore password encrypted with the Tenant Authentication

Context System public key (𝑇𝐴𝐶𝑝𝑘).

Scytl sVote

Protocol Specifications

78

• Choice Return Codes Encryption KeyStore password encrypted with the Tenant Vote

Verification Context System public key (𝑇𝑉𝑉𝑝𝑘).

• Code Secret key KeyStore encrypted with the Tenant Vote Verification Context System public

key (𝑇𝑉𝑉𝑝𝑘).

4.12 Administration Board signature at configuration

4.12.1 Administration Board private key reconstruction

The members of the Administration Board enter their smartcards in the computer where the SDM is

executed (e.g., Print Office or Canton environment). Only the threshold number of shares is required to

reconstruct the key, although more shares can be used. To compute the reconstruction of the key, the

Shamir Threshold Secret Sharing reconstruction algorithm is called.

For each share, its digital signature is verified using the Administration Board public key (𝐴𝐵𝑝𝑘) in the

X.509 certificate.

• Certificate validation: In case the X.509 certificate of the AB had to be previously downloaded

from the Administration Portal, the chain of certificates should be verified up to the root.

Then, it should be verified that the reconstructed private key is correct:

• Private key verification: Call the Digital signature generation primitive to sign a test message

with the reconstructed key and verify it using the AB certificate. If the validation is correct, the

reconstructed key is also correct.

4.12.2 Data to sign

The following data packs should be signed by the Administration Board using the Digital signature

generation primitive before uploading it to the corresponding online voting platform component. A

precondition for this step is that the Administration Board has been constituted.

• Authentication Voter Data (see Table 9- Authentication Voter Data)

• Authentication Context Data (see Table 10 - Authentication Context Data)

• Election Information Context Data (see Table 11 - Election Information Context Data)

• Voting Workflow Context Data (see Table 12 - Voting Workflow Context Data)

For each Ballot Box one signature of:

• Ballot Box Information (see Table 14 - Ballot Box Information)

• Ballot Box Context Data (see Table 15 - Ballot Box Context Data)

• Ballot Box Voter Data (see Table 16 - Ballot Box Voter Data)

For each Verification Card Set ID (𝑣𝑐𝑠𝑖𝑑), one signature of:

Scytl sVote

Protocol Specifications

79

• Verification Card Data (see Table 22 - Verification Card Data)

• Verification Card Set Data (see Table 25 - Verification Card Set Data)

• Verification Card Set Control Components Data (see Table 24 - Verification Card Set Control

Component Data)

• Codes Mapping Tables Context Data (see Table 26 - Codes Mapping Table Context Data)

• Vote Verification Context Data (see Table 27 - Vote Verification Context Data)

For each Ballot ID (𝑏𝑖𝑑), one signature of the ballot (see Table 13 - Ballot).

For each Voting Card Set ID (𝑣𝑐𝑑𝑠𝑖𝑑), one signature of:

• Voter Information (see Table 28 - Voter Information)

• Credential Data (see Table 21 - Credential Data)

• Extended Authentication Data (see Table 29 - Extended Authentication Data)

For each electoral authority one signature of:

• Electoral Authority Data (see Table 17 - Electoral Authority Data)

• Election Key Data (see Table 18 - Election Key Data)

4.13 Administration Board signature verification at configuration

When the configuration information is uploaded to a context / service, its signatures should be verified,

using the Administration Board certificate previously uploaded to the Certificate Registry. The upload is

successful only if the signatures are verified.

The configuration information needed to verify the AB signature should be stored in the context/service,

so that it can be verified in future (not just during upload).

Note: It should be verified that the configuration has been signed by an AB which is entitled to do so,

issued by the Tenant for which the election event has been created.

5 Voting phase

This phase starts when the voter enters the Start Voting Key (𝑆𝑉𝐾𝑖𝑑) into the application. Then the

following steps are executed:

• Protocol GetID algorithm: Obtains the voter’s identifier (Credential ID (𝑐𝑖𝑑)) from the Start Voting

Key (𝑆𝑉𝐾𝑖𝑑).

• Authentication: The voter is authenticated in the system using the challenge-response

mechanism. At the end of the process, the voter receives an Authentication Token that is

Scytl sVote

Protocol Specifications

80

included and validated in every request that the voting client sends to the voting server. They

also receive all the necessary information to cast their vote.

• Protocol GetKey algorithm: Obtains the KeyStore password (𝐾𝑆𝑘𝑒𝑦𝑖𝑑) from the Start Voting Key

(𝑆𝑉𝐾𝑖𝑑) to retrieve the Verification Card private key (𝑘𝑖𝑑)

• Send a vote:

o Protocol CreateVote algorithm: The voters select their voting options and the voting

client encrypts them using the Election public key (𝐸𝐿𝑝𝑘). Partial Choice Return Codes

are computed using the Verification Card private key (𝑘𝑖𝑑) and they are also encrypted.

Cryptographic proofs linking the contents of both ciphertexts are generated. The whole

vote is signed and sent to the voting server.

o Protocol ProcessVote algorithm: The vote is validated both by the voting server and by

the Control Components.

o Protocol CreateCC algorithm: The pre-Choice Return Codes are computed after the

interaction between the Voting Server and the Control Components. This protocol

defines which are the operations done by these system components.

o Protocol CreateRC algorithm: The short Choice Return Codes are retrieved from the

mapping table given the pre-Choice Return Codes computed by the previous algorithm.

o Generate receipt and store the vote: If the short Choice Return Codes are correctly

retrieved, they are sent to the voter, the receipt is generated, and the vote is stored in

the Ballot Box. The voter checks that the short Choice Return Codes received

correspond with the options selected.

• Protocol GetCC algorithm: In case the voter logs out after sending the vote and then logs in

back, the system returns the short Choice Return Codes.

• Confirm a vote:

o Protocol Confirm algorithm: The Confirmation Message is computed from the Ballot

Casting Key (𝐵𝐶𝐾𝑖𝑑) introduced by the voters to confirm their vote. The information is

signed and sent to the voting server.

o Protocol ProcessConfirm algorithm: The Confirmation Message is validated by the

voting server and the short Vote Cast Return Code is retrieved from the mapping table

after the interaction among the voting server and the Control Components. If the short

Vote Cast Return Code is correctly retrieved, it is sent to the voter together with the

vote and the receipt.

• Client-side receipt validation: The voting client validates the receipt and the voter checks that

the short Vote Cast Return Code received corresponds with that code in the Voting Card.

Scytl sVote

Protocol Specifications

81

In case any step of the processes described in this section fails due to a validation failure, or to a request

for a non-existing resource, the process stops, the error is logged and forwarded to the voter. An error

message is sent to the client context (in the event the error happened in the server-side), which shows

an error message in the screen. The voter will then have to log out and start the process again from the

last successful point:

• In case the vote was stored successfully, and the Choice Return Codes sent to the client, the

voter starts in the confirmation page where Choice Return Codes are shown on the screen after

login.

• In case the vote and the confirmation were stored successfully, the voter starts in the last page

where the Vote Cast Return Code and optionally the receipt and the signature are shown after

login.

• In case an error was found in the vote structure after the vote was stored, and the Choice Return

Codes were not successfully recovered, the voter will be blocked, and an error will be displayed.

5.1 Protocol GetID algorithm

Figure 16 - Protocol GetID

1) The voter enters the Authentication Key (Start Voting Key (𝑆𝑉𝐾𝑖𝑑) or a list of secrets) and an

optional challenge into the application. The voter has a limited number of attempts (the

maximum number of attempts is 5) to introduce the answer to the challenge. If the maximum

number is reached, the voting card is blocked.

2) From the Authentication Key entered, the Client Context:

a) Calls the Password-based key derivation function with the following inputs:

o Password: Authentication Key value

Scytl sVote

Protocol Specifications

82

o Salt: concatenation of the string ‘authID’ and the Election Event ID (𝑒𝑒𝑖𝑑)

The result is the Auth ID.

b) Calls the Password-based key derivation function with the following inputs:

o Password: Authentication Key value

o Salt: concatenation of the string ‘authPassword’ and the Election Event ID

(𝑒𝑒𝑖𝑑)

The result is the KeyStore password.

3) Sends the Auth ID, the Election Event ID (𝑒𝑒𝑖𝑑) and the challenge (if needed) to the server-

side.

4) The Extended Authentication Context receives the Auth ID, the Election Event ID (𝑒𝑒𝑖𝑑), the

Tenant ID and the challenge (if needed) and does the following actions:

a) Retrieves the extended authentication information (AuthenticationID,

PBKDF2(ChallengeAnswer, Salt), Salt, Encrypted(𝑆𝑉𝐾𝑖𝑑)) using the Auth ID, the

Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant ID.

b) Checks that the number of attempts does not exceed the maximum number of attempts

allowed. When the value reaches the maximum, the entry for the Auth ID is set to

BLOCKED.

c) Calls the Password-based key derivation function with the following inputs:

o Password: Challenge Answer value.

o Salt: salt stored in the extended authentication information.

d) Compares the computed value with the PBKDF2(ChallengeAnswer, Salt) retrieved. If

the comparison is ‘false’, increase the number of attempts.

5) The Extended Authentication Context sends the Encrypted (𝑆𝑉𝐾𝑖𝑑)) to the Client Context.

6) The Client Context calls the Symmetric decryption primitive to decrypt the encrypted SVK using

the KeyStore password derived from the Authentication Key.

7) The Client Context calls the Password-based key derivation function with the following inputs:

a) Password: Start Voting Key (𝑆𝑉𝐾𝑖𝑑).

b) Salt: concatenation of the string ‘credentialid’ and the Election Event ID (𝑒𝑒𝑖𝑑).

and obtains the Credential ID (𝑐𝑖𝑑).

Scytl sVote

Protocol Specifications

83

5.2 Authentication

Figure 17 - Authentication

In this phase, the Client Context and the Authentication Context engage in an authentication protocol.

After that, the Authentication Context will issue an Authentication Token to the voter and provide the

information to the Client Context necessary for performing the following steps of the protocol, depending

on the status of the voter in the system. We divide the authentication process in two steps:

• Challenge-response mechanism.

• Authentication token generation.

5.2.1 Challenge-response mechanism

1) The Client Context sends the Credential ID (𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant

ID to the Voting Workflow Context.

2) The Voting Workflow Context receives the Credential ID (𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑)

and the Tenant ID and sends them to the Authentication Context.

3) The Authentication Context receives the Credential ID (𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and

the Tenant ID and asks for the corresponding Credential Data to the Voter Material Context

using the Credential ID (𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant ID. In case the

Credential Data entry is not present, an error message is created and forwarded to the client

Scytl sVote

Protocol Specifications

84

context, which shows an error message to the voter. The voter is instructed to restart the

process.

4) Once the Authentication Context has received the Credential Data, it generates a Server

Challenge Message in the following way:

a) Calls the Random value generation primitive to generate a value of 16 bytes.

b) Generates a timestamp with the current time.

c) Calls the Digital signature generation primitive to sign the timestamp, the server random

value, the Credential ID (𝑐𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑) using the Authentication

Token Signer private key (𝐴𝑇𝑠𝑠𝑘).

d) The Server Challenge Message is composed by the server timestamp, the server

random and the signature in base64 format.

5) The Server Challenge Message, the Credential Data and the set of Certificates corresponding

to that Election Event ID (𝑒𝑒𝑖𝑑) is sent to the Voting Workflow Context.

6) The Voting Workflow Context sends the information to the Client Context.

7) The Client Context:

a) Verifies the certificate validity and the certificate chains of the certificates received:

o [Election Event Root CA]

o [Authentication Token Signer, Services CA, Election Event Root CA]

o [Administration Board Certificate, Tenant CA, Platform Root CA]

o [Credentials CA, Election Event Root CA]

o [Credential ID Auth, Credentials CA, Election Event Root CA]

o [Credential ID Sign, Credentials CA, Election Event Root CA]

b) Validates the signature over the Server Challenge Message values (server random,

server timestamp, Credential ID (𝑐𝑖𝑑), Election Event ID (𝑒𝑒𝑖𝑑)), using the

Authentication Token Signer public key (𝐴𝑇𝑠𝑝𝑘) from the corresponding certificate in

the set received.

c) Check that the Credential ID (𝑐𝑖𝑑) from the Server Challenge Message matches the

one in Credential Data.

d) Calls the Password-based key derivation function with the following information:

o Password: Start Voting Key (𝑆𝑉𝐾𝑖𝑑)

o Salt: concatenation of the string ‘KeyStorepin’ and the Election Event ID (𝑒𝑒𝑖𝑑)

The result is the KeyStore symmetric encryption key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑).

Scytl sVote

Protocol Specifications

85

e) Opens the KeyStore from Credential Data using the KeyStore password (𝐾𝑆𝑘𝑒𝑦𝑖𝑑),

retrieving:

o The Credential ID authentication (𝑘𝐶𝑖𝑑
𝑎) and Credential ID signing (𝑘𝐶𝑖𝑑

𝑠) private

keys.

o The X.509 certificates associated and their certificate chains.

f) Generates a Client Challenge Message in the following way:

o It calls the Random value generation primitive to generate a value of 16 bytes.

o It signs it together with the Server Challenge signature using the Credential ID

authentication private key (𝑘𝐶𝑖𝑑
𝑎) and calling the Digital signature generation

primitive.

8) Sends the Client Challenge Message, the Credential ID Authentication certificate, the Credential

ID (𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant ID to the Voting Workflow Context.

9) The Voting Workflow Context sends the information to the Authentication Context.

10) The Authentication Context verifies the information sent by the Client Context:

a) Validates the certificate chain (Credential ID Auth Certificate, Credentials CA

Certificate, Election Event Root CA).

b) Validates the signature over the Server Challenge Message values (server random,

timestamps, Credential ID (𝑐𝑖𝑑) and Election Event ID (𝑒𝑒𝑖𝑑)) using the Authentication

Token Signer public key (𝐴𝑇𝑠𝑝𝑘).

c) Verifies that the difference between the current time and the timestamp in the Server

Challenge Message is not greater than the challenge-response expiration time (already

set in the context).

d) Validates that the Credential ID (𝑐𝑖𝑑) of the request matches the Credential ID (𝑐𝑖𝑑)

contained in the Credential ID Authentication Certificate.

e) Validates the signature over the Client Challenge Message values (client random value,

server challenge signature), using the public key in the Credential ID Authentication

Certificate.

5.2.2 Authentication Token generation

11) In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter is

instructed to restart the login process. If not, the Authentication Context asks for voter-related

data to the Voter Material Context.

Scytl sVote

Protocol Specifications

86

12) The Authentication Context validates if the election is still open asking the Election

Information Context.

13) If the validation is successful, the Authentication Context prepares the Authentication Token:

a) Calls the Random value generation to generate the Authentication Token ID as a value

of 16 bytes.

b) Generates a timestamp with the current time.

c) Generates an Authentication Token containing the Voter Information, a timestamp and

the Authentication Token ID.

d) Calls the Digital signature generation primitive to sign the Authentication Token using

the Authentication Token Signer private key (𝐴𝑇𝑠𝑠𝑘).

14) The Authentication Context sends the Authentication Token back to the Voting Workflow

Context.

15) The Voting Workflow Context using the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) in the Authentication Token,

retrieves the voting card state and initializes it.

16) Using the Ballot ID (𝑏𝑖𝑑) and the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) in the Authentication Token, and the

Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant ID from the request, the Voting Workflow Context

retrieves the Ballot, the ballot text and the Ballot Box Voter Data with their corresponding

signatures from the Election Information Context.

17) Using the Verification Card ID (𝑣𝑐𝑖𝑑) and the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) in the Authentication Token,

and the Election Event ID (𝑒𝑒𝑖𝑑) and the Tenant ID from the request, the Voting Workflow

Context retrieves the Verification Card Data (Verification Card KeyStore and Signed verification

card public key), the Verification Card Set Data (Choice Return Codes Encryption public key

(𝑝𝑘𝐶𝐶𝑅), Verification Card Set Issuer Certificate, Vote Cast Return Code Signer Certificate) and

their signatures from the Vote Verification Context.

18) The Voting Workflow Context sends the Authentication Token, the Ballot, the Ballot Texts, the

Ballot Box Voter Data, the Verification Card Data, the Verification Card Set Data and their

signatures, to the Client Context.

19) The Client Context:

a) Signer certificate.

b) Checks that the fields Election Event ID (𝑒𝑒𝑖𝑑), Credential ID (𝑐𝑖𝑑), Ballot ID (𝑏𝑖𝑑),

Ballot Box ID (𝑏𝑏𝑖𝑑) and Verification Card ID (𝑣𝑐𝑖𝑑) in the Authentication Token are

consistent with the other data already known or received.

Scytl sVote

Protocol Specifications

87

c) Checks that the fields Ballot ID (𝑏𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and Verification Card ID

(𝑣𝑐𝑖𝑑) in the Authentication Token are consistent with the other data already known or

received (i.e., that the Ballot received has the same Ballot ID (𝑏𝑖𝑑)).

d) Checks whether the Ballot ID (𝑏𝑖𝑑) of the received Ballot is the same as that in the

Ballot Box Voter Data.

e) In case any of the previous validations fail, the application stops, and an error message

is shown to the voter. The voter needs to log out and start the logging process again.

5.3 Protocol GetKey algorithm

1) Calls the Password-based key derivation function with the following information:

a) Password: Start Voting Key (𝑆𝑉𝐾𝑖𝑑).

b) Salt: Concatenation of the string ‘keystorepin’ and the Election Event ID (𝑒𝑒𝑖𝑑).

The result is the KeyStore symmetric encryption key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑).

2) Uses the KeyStore symmetric encryption key (𝐾𝑆𝑘𝑒𝑦𝑖𝑑) KeyStoreto open the KeyStore in the

Verification Card Data and recover the Verification Card private key (𝑘𝑖𝑑).

5.4 Send a vote

5.4.1 Protocol CreateVote algorithm

Figure 18 - Protocol CreateVote

After being authenticated, the ballot is presented to the voter, who selects the desired voting options.

Then, the following steps are executed:

Scytl sVote

Protocol Specifications

88

1) Compress the prime numbers received (which represent the selected voting options) by

multiplying them together. The result will be encrypted using one of the components of the

election public key contained in the Ballot Box Voter Data. If write-ins are allowed:

a) The prime numbers associated with the write-ins that have been filled by the voter, are

compressed together with the other received primer numbers.

Note: The primer numbers associated with the write-in fields only indicates that the field

has been filled in but does not give any information about the text inside the write-in.

b) The content of each write-in field will be encrypted using one component of the Election

Key (different from the one used to encrypt the product of primer numbers). Before

encrypting the content should be translated into a number of the given mathematical

groups. For this, one proposal is to:

• transform the write-in field text (in UTF-8) to a fixed length number encoding,

• check that this value is not bigger than 𝑞 from the encryption parameters, and

• raise the value to 2 and compute 𝑚𝑜𝑑 𝑝. This will be the value provided to the

encryption.

Note: This specification assumes each write-in can be encoded as a numeric value

smaller than 2047 bits.

On the other hand, regarding the number of elements of the election public key, the only

limit we know so far is the smartcard storage which forces us to use 60 maximum write-

ins. The protocol is not limiting the number of write-ins at all.

Call the ElGamal encryption primitive3 with input the compressed prime numbers, the write-ins

(𝑤1, … , 𝑤𝑘) and the Election public key (𝐸𝐿𝑝𝑘
(1), … , 𝐸𝐿𝑝𝑘

(𝑚)
). Obtain the following ciphertext:

𝐸1 = (𝑔
𝑟 , (𝐸𝐿𝑝𝑘

(1))
𝑟
·∏𝑣𝑖

𝜓

𝑖=1

, (𝐸𝐿𝑝𝑘
(2))

𝑟
· 𝑤1, (𝐸𝐿𝑝𝑘

(3))
𝑟
· 𝑤2, … , (𝐸𝐿𝑝𝑘

(𝑚))
𝑟
· 𝑤𝑘)

If write-ins are allowed, the ciphertext 𝐸1 must have the same number of elements (𝑚) for every

voter whether they have filled in the write-ins or not. In case the voter has not filled the write-in

field, the string “2” is encrypted.

2) For each one of the voting options {𝑣𝑖}𝑖=1
𝜓

, compute a partial Choice Return Code 𝑝𝐶𝐶𝑖
𝑖𝑑 using

the Verification Card private key (𝑘𝑖𝑑) of the voter represented by the Verification Card ID (𝑣𝑐𝑖𝑑):

𝑝𝐶𝐶𝑖
𝑖𝑑 = 𝑣𝑖

𝑘𝑖𝑑 𝑚𝑜𝑑 𝑝 (where 𝑝 is taken from the encryption parameters)

No partial Choice Return Codes are generated for the write-in contents.

3 If the election key contains more elements than the number of options to be encrypted, the unused elements are multiplied and
used as the last element of the key.

Scytl sVote

Protocol Specifications

89

3) Call the ElGamal encryption primitive to encrypt all the partial Choice Return Codes with the

Choice Return Codes Encryption public key (𝑝𝑘𝐶𝐶𝑅) contained in the received Verification Card

Set Data.

𝐸2 = (𝑔
𝑟′ , (𝑝𝑘𝐶𝐶𝑅

(1))
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , (𝑝𝑘𝐶𝐶𝑅

(2))
𝑟′

· 𝑝𝐶𝐶2
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

The vote sent must include, for each encrypted partial Choice Return Code, the correctness ID

corresponding with that voting option with the flag “correctness = true”.

4) Generate cryptographic proofs linking the encrypted partial Choice Return Codes and the

encrypted product of primes:

a) Call the Schnorr proof generation primitive with the following inputs:

• Base element (group element): 𝑔

• Exponent: 𝑟

• Public input (group element): 𝑔𝑟

• Additional information: “𝑆𝑐ℎ𝑛𝑜𝑟𝑟𝑃𝑟𝑜𝑜𝑓: 𝑉𝑜𝑡𝑒𝑟 𝐼𝐷 = ” concatenated with the

value of the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) concatenated with “𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑣𝑒𝑛𝑡 𝐼𝐷 = ”

concatenated with the value of the Election Event ID (𝑒𝑒𝑖𝑑).

• Mathematical group (𝑝, 𝑞, 𝑔)

The result is the Schnorr proof (𝜋𝑠𝑐ℎ).

b) Call the Exponentiation proof generation primitive with the following inputs:

• Base elements (group elements): [𝑔, 𝑔𝑟 , (𝐸𝐿𝑝𝑘1)
𝑟

· ∏ 𝑣𝑖
𝜓
𝑖=1]

• Exponents: [𝑘𝑖𝑑]

• Public input (group elements): [𝐾𝑖𝑑, (𝑔
𝑟)𝑘𝑖𝑑 , ((𝐸𝐿𝑝𝑘1)

𝑟

· ∏ 𝑣𝑖
𝜓
𝑖=1)

𝑘𝑖𝑑
]

• Additional information “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓"

• Mathematical group (𝑝, 𝑞, 𝑔)

The result is the Exponentiation proof (𝜋𝑒𝑥𝑝).

c) Call the Plaintext Equality proof generation primitive with the following inputs:

• Primary Ciphertext: [(𝑔𝑟)𝑘𝑖𝑑 , ((𝐸𝐿𝑝𝑘1)
𝑟

· ∏ 𝑣𝑖
𝜓
𝑖=1)

𝑘𝑖𝑑
].

• Primary public key: [𝐸𝐿𝑝𝑘1]

• Primary randomness: [𝑟 · 𝑘𝑖𝑑]

Scytl sVote

Protocol Specifications

90

• Secondary Ciphertext: [𝑔𝑟
′
, ∏ (𝑝𝑘𝐶𝐶𝑅

(𝑖))
𝑟′

· 𝑝𝐶𝐶𝑖
𝑖𝑑𝜓

𝑖=1)

• Secondary public key: [∏ 𝑝𝑘𝐶𝐶𝑅
(𝑖)𝜓

𝑖=1]

• Secondary randomness: [𝑟′]

• Additional information “𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑃𝑟𝑜𝑜𝑓"

• Mathematical group: (𝑝, 𝑞, 𝑔)

The result is the Plaintext Equality proof (𝜋𝑝𝑙𝑒𝑞𝑒𝑛𝑐).

5) Call the Digital signature generation primitive to sign the following information using the

Credential ID signing private key (𝑘𝐶𝑖𝑑
𝑠):

a) The encrypted vote (𝐸1):

• The encrypted compressed primes

• The encrypted write-ins value

b) List of correctness IDs

c) The Schnorr proof

d) The Verification Card public key signature

e) The Authentication Token signature

f) The Voting Card ID (𝑣𝑐𝑑𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑).

6) The following information is sent to the Voting Workflow Context:

a) The encrypted vote (𝐸1)

b) The encrypted partial Choice Return Codes (𝐸2)

c) List of correctness IDs

d) The Verification Card public key (𝐾𝑖𝑑)

e) The Verification Card public key signature

f) Digitally signed vote

g) The Credential ID signing certificate

h) The Credential ID (𝑐𝑖𝑑)

i) Cryptographic proofs (𝜋𝑠𝑐ℎ, 𝜋𝑒𝑥𝑝, 𝜋𝑝𝑙𝑒𝑞𝑒𝑛𝑐)

j) Ciphertext exponentiations

k) The Authentication Token

Scytl sVote

Protocol Specifications

91

5.4.2 Protocol ProcessVote algorithm

Figure 19 - Protocol ProcessVote

The following actions happen at the server-side, when a vote is received:

1) The Voting Workflow Context sends the Authentication Token to the Authentication Context

to be validated.

2) The Authentication Context:

a) Validates the signature of the Authentication Token, using the Authentication Token

Signer certificate.

b) Checks that the fields Tenant ID, Election Event ID (𝑒𝑒𝑖𝑑), Voting Card ID (𝑣𝑐𝑑𝑖𝑑), in

the Authentication Token are consistent with the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) and Election

Event ID (𝑒𝑒𝑖𝑑) provided.

c) Verifies that the Authentication Token has not expired.

In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter is

instructed to restart the login process.

3) If the validations of the Authentication Token are successful, the Voting Workflow Context

checks the status of the Voting Card.

4) Only if the Voting Card status is NOT SENT, the vote is sent to the Election Information

Context to be validated.

5) The Election Information Context:

a) Validates that the Ballot Box is not blocked.

b) Verifies if the election is out of period checking the current timestamp against the

election dates from the election event configuration.

Scytl sVote

Protocol Specifications

92

c) Performs the following validations over the Vote:

i. Checks that the Credential ID signing certificate (which is provided together

with the Encrypted Vote) is issued for the same Credential ID (𝑐𝑖𝑑) which is

provided as a parameter.

ii. Validates the certificate chain: [Credential ID signing Certificate, Credentials

CA, Election Event Root CA]

iii. Verifies the digital signature over the values in the vote, the Authentication

Token signature, the Verification Card public key signature, the Voting Card ID

(𝑣𝑐𝑑𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑), using the Credential ID X.509 signing

certificate (which is provided together with the Encrypted Vote).

iv. Checks that the Election Event ID (𝑒𝑒𝑖𝑑), Tenant ID, Voting Card ID (𝑣𝑐𝑑𝑖𝑑),

Ballot Box ID (𝑏𝑏𝑖𝑑), Ballot ID (𝑏𝑖𝑑) and Credential ID (𝑐𝑖𝑑), inside the vote

match the corresponding IDs in the request and in the vote.

v. Checks that the Credential ID (𝑐𝑖𝑑) who signs the vote is the same Credential

ID (𝑐𝑖𝑑) from the request.

vi. Checks that the ciphertext elements are group elements.

vii. Checks that the number of votes cast by the voter does not exceed the

maximum number of allowed votes per voting card and authentication token.

viii. Verifies that the encrypted vote contains the correct number of elements:

number of write-ins that can be filled in the ballot (the number of voting options

with the label “writein”) plus 2 (the first element of the ciphertext and the

encrypted compressed primes).

ix. Validates the number of elements of the encrypted partial Choice Return

Codes, against what is defined by the election configuration, using the

attributes sent with the vote.

x. Uses the function encryptedCorrectnessRule defined in the ballot to validate

that the number of selected options, including blank selections, is equal to the

maximum established.

xi. Verifies that a vote is not already stored for that Voting Card ID (𝑣𝑐𝑑𝑖𝑑).

If all the validations are successful, a hash of the vote is stored to verify later (after the

Choice Return Codes computation) that the vote that is going to be saved in the Ballot

Box was correctly validated by the system. In case any of the previous

actions/validations fail, the application stops and an error is logged and forwarded to

the client context, which shows an error message to the voter. The voter is instructed

to restart the login process.

Scytl sVote

Protocol Specifications

93

6) If the validations performed in the Election Information Context are successful, the vote is sent

to the Vote Verification Context.

7) The Vote Verification Context:

a) Verifies the digital signature of the Verification Card public key (𝐾𝑖𝑑) using the

Verification Card Set Issuer certificate.

8) In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter is

instructed to restart the logging process. If validations are successful, the Vote Verification

Context broadcasts the information to every Control Component (𝐶𝐶𝑅𝑗).

9) Each Control Component (𝐶𝐶𝑅𝑗) does the following actions:

a) Checks if the voter has already sent a vote. If this is the case, the Control Component

stops the process, logs an error and forwards it to the client context, which shows an

error message to the voter. In this way, we prevent the Control Components from

computing more than once the Choice Return Codes for that voter and we avoid an

attack coming from the server.

b) Verifies the Schnorr proof (𝜋𝑠𝑐ℎ), the Exponentiation proof (𝜋𝑒𝑥𝑝) and the Plaintext

Equality proof (𝜋𝑝𝑙𝑒𝑞𝑒𝑛𝑐) . In case any of the previous actions/validations fail, the

application stops and an error is logged and forwarded to the client context, which

shows an error message to the voter. The voter is instructed to restart the logging

process.

c) Logs the vote (only the fields included in the signature) and its signature in a format that

the signature could be validated by an external process.

Scytl sVote

Protocol Specifications

94

5.4.3 Protocol CreateCC algorithm

Figure 20 - Protocol CreateCC

The Choice Return Codes are generated between the Vote Verification Context and the Control

Components:

1) Each Control Component (𝐶𝐶𝑅𝑗) does the following actions:

a) Derives the Voter choice return code generation private key (𝑘𝑖𝑑
𝑗
) from the

corresponding 𝐶𝐶𝑅𝑗 choice return code generation private key (𝑘𝑗
′) and the Verification

Card ID (𝑣𝑐𝑖𝑑):

i. Computes 𝑘𝑖𝑑
𝑗
= 𝐾𝐷𝐹(𝑣𝑐𝑖𝑑||𝑘𝑗

′, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ) calling the Key Derivation Function:

KDF1 specification primitive.

ii. Truncates the result to have 2047 bits.

iii. Checks that 1 ≤ 𝑘𝑖𝑑
𝑗
≤ 𝑞 − 1

iv. If the derived value is equal or greater than 𝑞, compute again a derivation but

using as input the derived value 𝐾𝐷𝐹(𝑘𝑖𝑑
𝑗
, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ).

v. 𝑘𝑖𝑑
𝑗
 is the Vote choice return code generation private key.

b) Computes the exponentiation:

𝐸2
𝑘𝑖𝑑
𝑗

= (𝑔𝑟
′
, (𝑝𝑘𝐶𝐶𝑅

(1)
)
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

𝑘𝑖𝑑
𝑗

Scytl sVote

Protocol Specifications

95

and calls the Exponentiation proof generation primitive to compute a proof of knowledge

of the exponent 𝑘𝑖𝑑
𝑗

. The inputs of the primitive are the following:

o Base elements (group elements): [𝑔, 𝐸2]

o Exponents: [𝑘𝑖𝑑
𝑗
]

o Public input (group elements): [𝐾𝑖𝑑
𝑗
, 𝐸2

𝑘𝑗
𝑖𝑑

]

o Additional information “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓"

o Mathematical group (𝑝, 𝑞, 𝑔)

The result is 𝜎𝐶𝐶𝑅𝑗
1 .

c) Calls the Digital signature generation primitive to sign the exponentiated ciphertext

𝐸2
𝑘𝑖𝑑
𝑗

 and the 𝜎𝐶𝐶𝑅𝑗
1 using the 𝐶𝐶𝑅𝑗 signing private key (𝑠𝑘𝐶𝐶𝑅𝑗

𝑠).

d) Stores the Verification Card ID (𝑣𝑐𝑖𝑑) in the database as an evidence that Choice

Return Codes have been already computed for that voter.

2) Sends the signed information to the Vote Verification Context.

3) The Vote Verification Context receives the following signed information from each Control

Component: {(𝐸2
𝑘𝑖𝑑
1 , 𝜎𝐶𝐶𝑅1

1); (𝐸2
𝑘𝑖𝑑
2

, 𝜎𝐶𝐶𝑅2
1); (𝐸2

𝑘𝑖𝑑
3

, 𝜎𝐶𝐶𝑅3
1); (𝐸2

𝑘𝑖𝑑
4

, 𝜎𝐶𝐶𝑅4
1)} and:

a) Retrieves the signed Choice Return Code generation public keys (𝐾𝑖𝑑
1 , 𝐾𝑖𝑑

2 , 𝐾𝑖𝑑
3 , 𝐾𝑖𝑑

4)

stored in Verification Card Set Control Components Data associated to the Verification

Card ID 𝑣𝑐𝑖𝑑.

b) Verifies the signatures and the proofs, multiplies the exponentiated ciphertexts 𝐸2
𝑘𝑖𝑑
𝑗

and obtains the encrypted pre-Choice Return Codes

∏𝐸2
𝑘𝑖𝑑
𝑗

4

𝑗=1

= (𝑔r
′· �̂�, (𝑝𝑘𝐶𝐶𝑅

(1)
)
r′· �̂�

· 𝑣1
𝑘, … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
r′· �̂�

· 𝑣𝜓
𝑘)

where �̂� = ∑ 𝑘𝑖𝑑
𝑗4

𝑗=1 and 𝑘 = 𝑘𝑖𝑑 · �̂�.

4) The Vote Verification Context sends 𝑔r
′· �̂� to the control components to obtain the partial

decryption.

5) Each Control Component receives 𝑔r
′· �̂� from the Vote Verification Context and uses its

private key share (𝑠𝑘𝐶𝐶𝑅𝑗
(1)

, … , , 𝑠𝑘𝐶𝐶𝑅𝑗
(𝜓)

) to compute the partial decryption:

{𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(1)
· �̂�·
, … , 𝑔

𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
· �̂�
}.

They also compute a proof of knowledge (𝜎𝐶𝐶𝑅𝑗
2) of the private key 𝑠𝑘𝐶𝐶𝑅𝑗

(1)
, … , , 𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
 but prior to

the computation the following values are calculated:

Scytl sVote

Protocol Specifications

96

a) Compressed 𝐶𝐶𝑅𝑗 Choice Return Codes Encryption private key: 𝑠𝑘𝐶𝐶𝑅𝑗
(1)

+⋯+ 𝑠𝑘𝐶𝐶𝑅𝑗
(𝜓)

b) Compressed 𝐶𝐶𝑅𝑗 Choice Return Codes Encryption public key: 𝑝𝑘𝐶𝐶𝑅𝑗
(1)

· 𝑝𝑘𝐶𝐶𝑅𝑗
(2)

···

𝑝𝑘𝐶𝐶𝑅𝑗
(𝜓)

c) Compressed exponentiated gammas: 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(1)
· �̂�·
· 𝑔

𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗
(2)

· �̂�·
··· 𝑔

𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
· �̂�
=

𝑔
𝑟′· �̂�·(𝑠𝑘𝐶𝐶𝑅𝑗

(1)
+⋯+𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
)

Calls the Exponentiation proof generation primitive with the following inputs:

a) Base elements (group elements): [𝑔, 𝑔r
′· �̂�]

b) Exponents: [𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦]

c) Public input (group elements):

[𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑒𝑑𝐺𝑎𝑚𝑚𝑎𝑠]

d) Additional information “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓"

e) Mathematical group (𝑝, 𝑞, 𝑔)

The result is 𝜎𝐶𝐶𝑅𝑗
2 .

6) Calls the Digital signature generation primitive to sign the partial decryption and the proof using

the 𝐶𝐶𝑅𝑗 signing private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

7) The signed information is sent to the Vote Verification Context.

8) The Vote Verification Context receives the following signed information from each Control

Component: {𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(1)
· �̂�·
, … , 𝑔

𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
· �̂�
} , 𝜎𝐶𝐶𝑅𝑗

1 and does the following actions:

a) Retrieves the Signed 𝐶𝐶𝑅𝑗 Choice Return Codes generation public keys

(𝑔𝑘1
′
, 𝑔𝑘2

′
, 𝑔𝑘3

′
, 𝑔𝑘4

′
) stored in the Verification Card Set Control Components Data to verify

the proofs (𝜎𝐶𝐶𝑅1
1 , 𝜎𝐶𝐶𝑅2

1 , 𝜎𝐶𝐶𝑅3
1 , 𝜎𝐶𝐶𝑅4

1)

b) Verifies the signatures and the proofs.

c) Multiplies all the partial decryptions and obtains the decrypted pre-Choice Return

Codes {𝑝𝐶𝑖
𝑖𝑑}

𝑖=1

𝜓
 for each voting option:

𝑔−𝑟
′·𝑠𝑘𝐶𝐶𝑅

(1)
· �̂� =∏𝑔

−𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗
(1)

· �̂�
4

𝑗=1

⋮

𝑔−𝑟
′·𝑠𝑘𝐶𝐶𝑅

(𝜓)
· �̂� =∏𝑔

−𝑟′·𝑠𝑘𝐶𝐶𝑅𝑗

(𝜓)
· �̂�

4

𝑗=1

Scytl sVote

Protocol Specifications

97

Note that as 𝑝𝑘𝐶𝐶𝑅
(1)

= 𝑔𝑠𝑘𝐶𝐶𝑅
(1)

, … , 𝑝𝑘𝐶𝐶𝑅
(𝜓)

= 𝑔𝑠𝑘𝐶𝐶𝑅
(𝜓)

, if the server multiplies every ciphertext

element by its corresponding partial decryption element, the pre-Choice Return Codes

{𝑝𝐶𝑖
𝑖𝑑}

𝑖=1

𝜓
 are obtained:

𝑝𝐶1
𝑖𝑑 = 𝑣1

𝑘 = 𝑔−𝑟
′·𝑠𝑘𝐶𝐶𝑅

(1)
· �̂� · (𝑝𝑘𝐶𝐶𝑅

(1)
)
r′· �̂�

· 𝑣1
𝑘

⋮

𝑝𝐶𝜓
𝑖𝑑 = 𝑣𝜓

𝑘 = 𝑔−𝑟
′·𝑠𝑘𝐶𝐶𝑅

(𝜓)
· �̂� · (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
r′· �̂�

· 𝑣𝜓
𝑘

5.4.4 Protocol CreateRC algorithm

Figure 21 - Protocol CreateRC

Once the pre-Choice Return Codes are obtained, the Vote Verification Context does the following

actions per Verification Card ID (𝑣𝑐𝑖𝑑):

1) Looks for the Codes Mapping Table corresponding to the Verification Card ID (𝑣𝑐𝑖𝑑) and Election

Event ID (𝑒𝑒𝑖𝑑) and for each pre-Choice Return Code 𝑝𝐶𝑖
𝑖𝑑 = 𝑣𝑖

𝑘:

a) Concatenates it with the Verification Card ID (𝑣𝑐𝑖𝑑), the Election Event ID (𝑒𝑒𝑖𝑑) and

the corresponding voting option attributes with the flag “correctness = true”. Call the

Hash generation primitive with input the concatenated value. The result is the long

Choice Return Code:

𝑙𝐶𝐶𝑖
𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝑣𝑖

𝑘||𝑣𝑐𝑖𝑑||𝐸𝐸𝐼𝐷||{𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠})

Scytl sVote

Protocol Specifications

98

• For each long Choice return Code, call the Hash generation primitive to

compute the hash of the long Choice Return Code (𝑙𝐶𝐶𝑖
𝑖𝑑) concantenated with

the Codes Secret Key (𝐶𝑠𝑘) and call the Key Derivation Function: KDF1

specification to generate the Choice Return Code encryption symmetric key

𝑠𝑘𝑐𝑐𝑖
𝑖𝑑 = 𝐾𝐷𝐹(𝐻𝑎𝑠ℎ(𝑙𝐶𝐶𝑖

𝑖𝑑||𝐶𝑠𝑘), 256 𝑏𝑖𝑡𝑠).

• Retrieves the encrypted short Choice Return Code from the mapping table

using 𝐻𝑎𝑠ℎ(𝑙𝐶𝐶𝑖
𝑖𝑑) and calls the Symmetric decryption primitive to decrypt it

using 𝑠𝑘𝑐𝑐𝑖
𝑖𝑑. The result is the short Choice Return Code to be sent to the voter.

b) Checks that all the retrieved short Choice Return Codes are different. If not, interrupt

the process and send a validation error.

2) The short Choice Return Codes and the computations done by the Control Components are

sent to the Voting Workflow Context.

3) If the short Choice Return Codes are correctly retrieved, the Voting Workflow Context updates

the status of the voting card to SENT BUT NOT CAST.

4) The Election Information Context stores the vote, the Control Components computations and

generates the receipt (see next section).

5) The Choice Return Codes are sent back to the Voting Client, which displays them in the screen.

6) The voter checks, using his/her voting card, that the Choice Return Codes received are those

corresponding with the voting options selected.

7) In case of any error in the validations/generation, Choice Return Codes do not have to be sent

back to the Voting Client.

5.4.5 Generate receipt and store vote

The Election Information Context generates the receipt and stores the vote and receipt in the Ballot

Box: It does the following:

1) Verifies that the vote was correctly validated checking if there is a hash of that vote stored.

2) Computes a Receipt from the vote: It calls the Hash generation primitive and computes a hash

of the vote signature, the authentication token signature, the verification card public key

signature, the Election Event ID (𝑒𝑒𝑖𝑑) and the Voting Card ID (𝑣𝑐𝑑𝑖𝑑).

3) Calls the Digital signature generation primitive to sign the Receipt using the Ballot Box Signer

private key (𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑).

4) Checks that the vote that is going to be stored has been validated.

5) Stores the vote (Tenant ID, Election Event ID (𝑒𝑒𝑖𝑑), Ballot ID (𝑏𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑),

Voting Card ID (𝑣𝑐𝑑𝑖𝑑), Credential ID (𝑐𝑖𝑑), Verification Card ID (𝑣𝑐𝑖𝑑), Verification Card Set ID

Scytl sVote

Protocol Specifications

99

(𝑣𝑐𝑠𝑖𝑑), encryption voting options, encrypted partial Choice Return Codes, Control Components

computations (those sent in step 2) and 7) of Protocol CreateCC algorithm), list of correctness

IDs, verification card public key (𝐾𝑖𝑑), verification card public key signature, vote signature,

Credential ID signing certificate, Authentication Token, Authentication token signature,

cryptographic proofs, ciphertext exponentiations), the digitally Signed Receipt and the signed

authentication token in the Ballot Box.

In case any of the previous actions/validations fail, the application stops and an error is logged and

forwarded to the client context, which shows an error message to the voter. The voter is instructed to

restart the login process.

5.5 Protocol GetCC algorithm

The system allows the voter to log out after sending the vote, and to log back in to see the Choice Return

Codes again and confirm their vote. In this case, after authentication, the corresponding vote and Control

Components computations are obtained from the Ballot Box and the voting server does the following:

1. Obtain the encrypted pre-Choice Return Codes as it is done in step 3.b.

2. Obtain the decrypted pre-Choice Return Codes as it is done in step 8.c.

3. Repeat the steps defined in section 5.4.4.

Using the computations stored in the ballot box we avoid the Control Components from computing the

Choice Return Codes more than once for the same voter.

5.6 Confirm a vote

5.6.1 Protocol Confirm algorithm

Figure 22 - Protocol Confirm

The following steps are followed to confirm a vote:

1) The voter enters the Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑).

Scytl sVote

Protocol Specifications

100

2) The Client Context uses the checksum algorithm to validate the Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑).

3) If the validation is successful, the Client Context squares the Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑) and

raises it to the Verification Card private key (𝑘𝑖𝑑): (𝐵𝐶𝐾𝑖𝑑)2·𝑘𝑖𝑑 𝑚𝑜𝑑 𝑝 (where 𝑝 is taken from the

encryption parameters). This is the Confirmation Message: 𝐶𝑀𝑖𝑑 = (𝐵𝐶𝐾𝑖𝑑)2·𝑘𝑖𝑑.

4) Calls the Digital signature generation primitive to sign the Confirmation Message together with

the Authentication Token signature, the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑)

using the Credential ID signing private key (𝑘𝐶𝑖𝑑
𝑠).

5) The exponentiated Confirmation Message, its signature, the Credential ID (𝑐𝑖𝑑), the Credential

ID signing certificate and the Authentication Token are sent to the Voting Workflow Context

Context.

5.6.2 Protocol ProcessConfirm algorithm

Figure 23 - Protocol ProcessConfirm

Upon receipt of a confirmation message from a voter, the server-side takes the following steps:

1) The Voting Workflow Context sends the Authentication Token to the Authentication Context

to be validated.

2) The Authentication Context:

a) Validates the signature of the Authentication Token, using the Authentication Token

Signer certificate.

Scytl sVote

Protocol Specifications

101

b) Checks that the fields Tenant ID, Election Event ID (𝑒𝑒𝑖𝑑), Voting Card ID (𝑣𝑐𝑑𝑖𝑑), in

the Authentication Token are consistent with the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) and Election

Event ID (𝑒𝑒𝑖𝑑) provided.

c) Verifies that the Authentication Token has not expired.

3) If the validation of the Authentication Token is successful, the Voting Workflow Context

checks the status of the Voting Card.

4) Only when the Voting Card status is SENT BUT NOT CAST, the confirmation message is sent

to the Election Information Context to be validated.

5) The Election Information Context validates the confirmation message in the following way:

a) Validates that the Ballot Box is not blocked.

b) Checks that the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) has not confirmed a vote yet and that exists a

vote pending to confirm for that Voting Card ID (𝑣𝑐𝑑𝑖𝑑).

c) Checks that the Credential ID signing certificate (which is provided together with the

Confirmation Message) is issued for the same Credential ID (𝑐𝑖𝑑) which is provided as

a parameter.

d) Validates the certificate chain: [Credential ID signing Certificate, Credentials CA,

Election Event Root CA].

e) Verifies the digital signature over the Confirmation Message, the Authentication Token

signature, the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) and the Election Event ID (𝑒𝑒𝑖𝑑) using the

Credential ID signing certificate.

f) Checks that the Election Event ID (𝑒𝑒𝑖𝑑) signed with the Confirmation Message

matches with the Election Event ID (𝑒𝑒𝑖𝑑) received from the request.

g) Verifies that the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) signed with the Confirmation Message

corresponds with the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) provided in the request.

h) Checks that the Confirmation Message is a group element.

i) Verifies if the election is out of period checking the current timestamp against the

election dates from the election event configuration.

In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter can

log out and log in, and the steps of GetID, Authentication and GetCC are executed. After that,

the voter is presented with the confirmation screen and they can restart the confirmation

process.

6) If valid, it is checked whether the maximum number of confirmation attempts has been reached.

If so, the protocol stops, an error is returned to the client context, which shows it to the voter.

Scytl sVote

Protocol Specifications

102

From this point, the voter is blocked and cannot proceed to confirm their vote. If not, the counter

is increased, and the confirmation message is sent to the Vote Verification Context.

7) The Vote Verification Context then broadcasts the information to every Control Component

(𝐶𝐶𝑅𝑗).

8) Each Control Component (𝐶𝐶𝑅𝑗):

a) Checks if the choice return codes have been previously computed for that. If this is not

the case, the Control Component stops the process, logs an error and forwards it to the

client context, which shows an error message to the voter. In this way we prevent the

Control Components from processing a confirmation of a vote that has not been cast.

b) Checks if the maximum number of confirmation attempts has been reached. If so, the

protocol stops, an error is logged and returned to the client context, which shows it to

the voter. If not, the counter is increased and the process continues.

c) Logs the confirmation message and its signature in a format that the signature could be

validated by an external process using the information logged.

d) Derives the Voter Vote Cast Return Code generation private key (𝑘𝑐𝑖𝑑
𝑗
) from the

corresponding 𝐶𝐶𝑅𝑗 choice return codes generation private key (𝑘𝑗
′) , the confirm text

padding and the Verification Card ID (𝑣𝑐𝑖𝑑):

• Computes 𝑘𝑐𝑖𝑑
𝑗
= 𝐾𝐷𝐹(𝑣𝑐𝑖𝑑||𝑐𝑜𝑛𝑓𝑖𝑟𝑚||𝑘𝑗

′, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ) calling the Key Derivation

Function: KDF1 specification primitive.

• Truncates the result to have 2047 bits.

• Checks that 1 ≤ 𝑘𝑐𝑖𝑑
𝑗
≤ 𝑞 − 1

• If the derived value is equal or greater than 𝑞, it computes again a derivation

but using as input the derived value 𝐾𝐷𝐹(𝑘𝑐𝑖𝑑
𝑗
, 𝑝 𝑙𝑒𝑛𝑔𝑡ℎ)

• 𝑘𝑐𝑖𝑑
𝑗
 is the Voter Vote Cast Return Code generation private key.

e) Computes the squared hash and then the exponentiation of the result:

(𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
𝑗

and calls the Exponentiation proof generation primitive to compute a proof of knowledge

of the exponent 𝑘𝑐𝑖𝑑
𝑗

. The inputs of the primitive are the following:

• Base elements (group elements): [𝑔, 𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2]

• Exponents: [𝑘𝑐𝑖𝑑
𝑗
]

• Public input (group elements): [𝐾𝑐𝑖𝑑
𝑗
, (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑

𝑗

]

Scytl sVote

Protocol Specifications

103

• Additional information: “𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑜𝑓"

• Mathematical group (𝑝, 𝑞, 𝑔)

The result is 𝜎𝐶𝐶𝑅𝑗
3 .

f) The exponentiation and the proof 𝜎𝐶𝐶𝑅𝑗
3 are signed using the 𝐶𝐶𝑅𝑗 signing private key

(𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

9) The signed information

{((𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
1
, 𝜎𝐶𝐶𝑅1

3); ((𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
2
, 𝜎𝐶𝐶𝑅2

3);

((𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
3
, 𝜎𝐶𝐶𝑅3

3); ((𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
4
, 𝜎𝐶𝐶𝑅4

3)}

is sent to the Vote Verification Context.

10) The Vote Verification Context:

a) Retrieves the signed Voter vote cast return generation public keys

(𝐾𝑐𝑖𝑑
1 , 𝐾𝑐𝑖𝑑

2 , 𝐾𝑐𝑖𝑑
3 , 𝐾𝑐𝑖𝑑

4) in the Verification Card Set Control Components Data associated

to the voter 𝑣𝑐𝑖𝑑.

b) Verifies the signatures and the proofs, multiplies the exponentiated squared hashes of

the Confirmation Message and obtains the pre-Vote Cast Return Code.

𝑝𝑉𝐶𝐶𝑖𝑑 =∏(𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
𝑗

4

𝑗=1

= (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘�̂�

where 𝑘�̂� = ∑ 𝑘𝑐𝑖𝑑
𝑗4

𝑗=1 .

11) Given the pre-Vote Cast Return Code, the Vote Verification Context does the following

actions:

a) Looks for the Codes Mapping Table corresponding to the Verification Card ID (𝑣𝑐𝑖𝑑)

and Election Event ID (𝑒𝑒𝑖𝑑).

b) Calls the Message Authentication Code generation primitive the concatenation of the

pre-Vote Cast Return Code (𝑝𝑉𝐶𝐶𝑖𝑑) with the Verification Card ID (𝑣𝑐𝑖𝑑) and the

Election Event ID (𝑒𝑒𝑖𝑑). The result is the long Vote Cast Return Code:

𝑙𝑉𝐶𝐶𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝑝𝑉𝐶𝐶𝑖𝑑||𝑣𝑐𝑖𝑑||𝐸𝐸𝐼𝐷)

c) Computes the hash of the concatenation of the long Vote Cast Return Code (𝑙𝑉𝐶𝐶𝑖𝑑)

and the Codes Secret Key (𝐶𝑠𝑘) . Then, calls the Key Derivation Function: KDF1

specification to generate Vote Cast Return Code encryption symmetric key: 𝑠𝑘𝑣𝑐𝑐𝑖𝑑 =

𝐾𝐷𝐹(𝐻𝑎𝑠ℎ(𝑙𝑉𝐶𝐶𝑖𝑑||𝐶𝑠𝑘), 256 𝑏𝑖𝑡𝑠).

Scytl sVote

Protocol Specifications

104

d) Calls the Hash generation primitive to compute the hash of the long Vote Cast Return

Code: 𝐻𝑎𝑠ℎ(𝑙𝑉𝐶𝐶𝑖𝑑) and find the corresponding value in the table: 𝐻𝑎𝑠ℎ(𝑙𝑉𝐶𝐶𝑖𝑑) −

𝐸𝑛𝑐(𝑉𝐶𝐶𝑖𝑑||𝑠𝑖𝑔𝑛𝑒𝑑𝑉𝐶𝐶𝑖𝑑 , 𝑠𝑘𝑣𝑐𝑐𝑖𝑑).

e) Calls the Symmetric decryption primitive to decrypt the ciphertext

𝐸𝑛𝑐(𝑉𝐶𝐶𝑖𝑑||𝑠𝑖𝑔𝑛𝑒𝑑𝑉𝐶𝐶𝑖𝑑 , 𝑠𝑘𝑣𝑐𝑐𝑖𝑑) using the corresponding symmetric key and obtain

the Vote Cast Return Code and its signature: 𝑉𝐶𝐶𝑖𝑑 , 𝑠𝑖𝑔𝑛𝑒𝑑𝑉𝐶𝐶𝑖𝑑.

f) Verifies the signature over the retrieved Vote Cast Return Code using the Vote Cast

Return Code Signer public key (𝑉𝐶𝐶𝑠𝑝𝑘).

In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter can

log out and log in, and the steps of GetID, Authentication and GetCC are executed. After that,

the voter is presented with the confirmation screen and they can restart the confirmation

process.

12) The short Vote Cast Return Code together with its signatures and the Control Components

computations are sent to the Election Information Context.

13) The Election Information Context stores the Vote Cast Return Code, its signature and the

Control Component computations in the Ballot Box and retrieves the vote and the receipt.

14) The vote and the receipt are sent to the Voting Workflow Context.

15) The Voting Workflow Context changes the status of the voting card from “SENT BUT NOT

CAST” to “CAST”.

16) The Voting Workflow Context sends the receipt, the vote and the Vote Cast Return Code to

the Client Context.

5.7 Client-side receipt validation

The Client Context validates the received information and shows the Vote Cast Return Code to the

voter: The Client Context:

1) Verifies the signature of the Signed Receipt, using the Ballot Box Signer public key (𝐵𝐵𝑠𝑝𝑘
𝑏𝑏𝑖𝑑)

2) Calls the Hash generation primitive to compute the hash of the Vote Signature, the

Authentication Token signature, the Verification Card public key signature, the Election Event

ID (𝑒𝑒𝑖𝑑) and the Voting Card ID (𝑣𝑐𝑑𝑖𝑑). It verifies that this value corresponds with the receipt

value received.

3) Verifies that the vote received is the same as the vote sent, if it is still present in memory.

Otherwise, it verifies that:

Scytl sVote

Protocol Specifications

105

a) The signature of the vote received validates successfully using the Credential ID signing

public key (𝐾𝐶𝑖𝑑
𝑠);

b) The signature of the Authentication Token from the vote received validates successfully

using the Authentication Token Signer public key (𝐴𝑇𝑠𝑝𝑘);

c) The Election Event ID (𝑒𝑒𝑖𝑑) and the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) in the Authentication Token

from the vote received match those from the Authentication Token received from the

authentication process.

d) Verifies that the Voting Card ID (𝑣𝑐𝑑𝑖𝑑) signed with the Vote Cast Return Code matches

the one in the received vote.

e) Verifies the signature of the Vote Cast Return Code using the Vote Cast Return Code

Signer public key (𝑉𝐶𝐶𝑠𝑝𝑘).

If all the verifications succeed, the Vote Cast Return Code is shown to the voter on the screen, and

optionally the receipt and signature (in case of the Canton of Neuchâtel, the receipt is shown on the

screen, in case of Fribourg, the receipt is not shown). Otherwise, the process stops and an error is

shown on the screen.

5.8 Request Vote Cast Return Code and Receipt

The system allows the voter to log out after casting the vote, and then log in back to see the Vote Cast

Return Code and the Receipt again. In this case, after the steps defined in the protocol GetID and in the

Authentication phase are done, the corresponding Vote Cast Return Code and Receipt are obtained

from the Ballot Box and the steps defined in the section 5.7 are repeated.

Scytl sVote

Protocol Specifications

106

6 Counting phase

6.1 Protocol Tally algorithm

The following diagram is an overview of the Tally algorithm. The modules involved in this protocol are

the Election Information Context, the Mixing Control Components (𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3, 𝐶𝐶𝑀4), the

Election Administration and the Bulletin Board.

Figure 24 - Counting phase overview

As explained in section 0, each voting system component has a local Bulletin Board where the audit

data is stored, and the information of these local Bulletin Boards is then compiled to a global Bulletin

Scytl sVote

Protocol Specifications

107

Board (Audit System component). For simplicity, we are not going to refer to each local Bulletin Board

but to a global one.

6.1.1 Cleansing

The Cleansing process makes sure that only confirmed votes (i.e.: those for which the voters entered a

valid Ballot Casting Key (𝐵𝐶𝐾𝑖𝑑)) are considered during the mixing and decryption processes. In

addition, it ensures that in case there is more than one vote per Voting Card ID (𝑣𝑐𝑑𝑖𝑑), none of them

are considered in further phases. Actually, this validation is already done by the server during the voting

phase, so it is not necessary in this step and for this reason the Cleansing only discards unconfirmed

votes. Then, it removes all the information from the valid votes except for the encrypted voting options,

which will be processed by the mixing and the decryption.

As the first part of the mixing and decryption processes is done in the online Control Components, the

Cleansing is executed online in the Voting Server. The following lists are generated:

• List of non-confirmed votes: list of Voting Card IDs, timestamps and receipts that correspond to

non-confirmed votes.

• List of successful votes: list of Voting Card IDs, timestamps and receipts corresponding to the

valid and confirmed votes.

• List of ciphertexts (encrypted options) corresponding to valid votes.

The list containing the encrypted options will be the Cleansed Ballot Box, that is, the input of the mixing

process.

When cleansed Ballot Boxes are requested from the first Control Component to be mixed, the first step

is to sign them in the server-side, to protect their integrity.

Each Ballot Box has an opening and closing time configured inside the election period. A regular Ballot

Box cannot be sealed and exported from the server until the election period ends. However, during the

configuration it is possible to create Ballot Boxes for testing purposes, which can be sealed and exported

before the Ballot Box closing time has passed.

The Cleansed Ballot Box is signed together with a timestamp, the Election key, the Tenant ID, the

Election Event ID (𝑒𝑒𝑖𝑑) and the Ballot Box ID (𝑏𝑏𝑖𝑑), using the Election Information Signing private key

(𝐸𝐼𝑠𝑘
𝑠). Both the list of successful votes and the list of failed votes are signed during the Ballot Box export

process (see section 6.2).

The whole Ballot Box must be validated in the verification phase, that is, it should be checked that only

non-confirmed votes were discarded during the cleansing and that the confirmed ones were valid (i.e.:

valid vote signature, valid zero knowledge proofs, …).

6.1.2 Mixing and Decryption

Control Components will perform mixing and partial decryption sequentially.

Scytl sVote

Protocol Specifications

108

The mixing process breaks the correlation between the votes collected in the Ballot Boxes and the votes

to be decrypted, by shuffling and re-encrypting them. It also produces proofs of the correct computation

of the mixing process. The decryption of the votes requires a collaboration between the online Control

Components (𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3) and the offline Control Component 𝐶𝐶𝑀4.

The Electoral Board members provide their shares of the Electoral Board private key (𝐸𝐵𝑠𝑘) to the

𝐶𝐶𝑀4, where the private key reconstructed using the Shamir Threshold Secret Sharing reconstruction

algorithm. At that point, the votes in the Ballot Boxes are decrypted and the result factorized (according

to the voting options they could be composed of) to obtain the individual voting option values

representing the voter’s selections.

Similar to the mixing process, the decryption process also produces zero knowledge proofs of correct

computation.

For the description to be clearer, we will differentiate between the first, the second, the third and the last

Control Component.

6.1.2.1 First Control Component (𝑪𝑪𝑴𝟏)

The first Control Component 𝐶𝐶𝑀1 receives as input the following parameters:

• Cleansed Ballot Box.

• Signature of Cleansed Ballot Box, Election key, Tenant ID, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box

ID (𝑏𝑏𝑖𝑑) and timestamp.

• Election Information Signing Certificate.

• Election public key (𝐸𝐿𝑝𝑘)

And does the following actions:

1) Validate the signature of the Cleansed Ballot Box using the Election Information Signing public

key (𝐸𝐼𝑝𝑘
𝑠).

2) Validate the Certificate chain [Election Information Signing Certificate, Platform Root CA].

3) Mix the Cleansed Ballot Box:

a) Calls the ElGamal ciphertexts permutation primitive with input the Cleansed Ballot Box.

The result is the permuted Cleansed Ballot Box.

b) For each ciphertext in the permuted Cleansed Ballot Box, call the ElGamal Re-

encryption primitive with input the ciphertext and the Election key (inside the

corresponding Ballot Box Voter Data). The result is the permuted and re-encrypted

Cleansed Ballot Box.

4) Create a Mixed Ballot Box 𝐶𝐶𝑀1 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of permuted and re-

encrypted votes.

Scytl sVote

Protocol Specifications

109

5) Call the Mixing proof generation primitive to generate the cryptographic proofs to demonstrate

that the shuffled and re-encrypted votes in the Mixed Ballot Box 𝐶𝐶𝑀1 are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (𝑏𝑏𝑖𝑑).

6) For each ciphertext in the Mixed Ballot Box 𝐶𝐶𝑀1, call the ElGamal decryption primitive with

input the ciphertext and the Control Component 𝐶𝐶𝑀1 Mixing private key (𝑥1).

7) Create a Partially Decrypted Ballot Box 𝐶𝐶𝑀1 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of

partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box 𝐶𝐶𝑀1 , call the Decryption proof

generation primitive with the following inputs:

a) Control Component 𝐶𝐶𝑀1 Mixing public key (𝑔𝑥1).

b) Ciphertext.

c) Partially decrypted ciphertext.

d) Control Component 𝐶𝐶𝑀1 Mixing private key (𝑥1).

e) Mathematical group.

The output is the decryption proofs 𝜋𝑑𝑒𝑐1.

9) When votes are partially decrypted, the contribution of the 𝐶𝐶𝑀1 Mixing private key (𝑥1) in the

Election public key is removed. This means that the next Control Component performs the

mixing using the remaining Election public key and this key is computed in the 𝐶𝐶𝑀1:

𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦: 𝐸𝐿𝑝𝑘 = (𝐸𝐿𝑝𝑘1 , 𝐸𝐿𝑝𝑘2 , … , 𝐸𝐿𝑝𝑘𝑚) = (𝑔
𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

13
𝑗=1 , 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

23
𝑗=1 , … , 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

𝑚3
𝑗=1)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦:

𝐸𝐿𝑝𝑘
1 = (𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

13
𝑗=1 · 𝑔−𝑥1

1
, 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

23
𝑗=1 · 𝑔−𝑥1

2
, … , 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

𝑚3
𝑗=1 · 𝑔−𝑥1

𝑚
)

= (𝑔𝐸𝐵𝑠𝑘+𝑥2
1+𝑥3

1
, 𝑔𝐸𝐵𝑠𝑘+𝑥2

2+𝑥3
2
, … , 𝑔𝐸𝐵𝑠𝑘+𝑥2

𝑚+𝑥3
𝑚
)

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp

together with the Cleansed Ballot Box, Mixed Ballot Box 𝐶𝐶𝑀1, the Partially Decrypted Ballot

Box 𝐶𝐶𝑀1, the Mixing proof, the Decryption proofs, the Remaining Election Key, the Election

key, the Election Event ID (𝑒𝑒𝑖𝑑), the Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control

Component, using the 𝐶𝐶𝑀1 signing private key (𝑠𝑘𝐶𝐶𝑀1
𝑠).

11) The following information is sent to the next Control Component:

a) Mixed Ballot Box 𝐶𝐶𝑀1 and mixing proof.

b) Partially Decrypted Ballot Box 𝐶𝐶𝑀1 and decryption proofs.

c) Remaining Election key 𝐸𝐿𝑝𝑘
1

Scytl sVote

Protocol Specifications

110

d) 𝐶𝐶𝑀1 Mixing public key (𝑔𝑥1).

e) 𝐶𝐶𝑀1 signing certificate and 𝐶𝐶𝑀1 CA certificate.

f) Signature of the timestamp, Cleansed Ballot Box, Mixed Ballot Box 𝐶𝐶𝑀1, Partially

Decrypted Ballot Box 𝐶𝐶𝑀1, Mixing proof, Decryption proofs, Remaining Election Key,

Election key Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the

Control Component 𝐶𝐶𝑀1.

6.1.2.2 Second Control Component (𝑪𝑪𝑴𝟐)

The second Control Component 𝐶𝐶𝑀2 receives as input the following parameters:

• Cleansed Ballot Box, Mixed Ballot Box 𝐶𝐶𝑀1 and Partially Decrypted Ballot Box 𝐶𝐶𝑀1.

• Mixing proof and Decryption proofs

• Signature of the timestamp, Mixed Ballot Box 𝐶𝐶𝑀1 , Partially Decrypted Ballot Box 𝐶𝐶𝑀1 ,

Mixing proof, Decryption proofs, Remaining Election Key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box

ID (𝑏𝑏𝑖𝑑) and an identifier of the Control Component 𝐶𝐶𝑀1.

• 𝐶𝐶𝑀1 signing certificate, 𝐶𝐶𝑀1 CA certificate and Platform Root CA.

• 𝐶𝐶𝑀1 Mixing public key (𝑔𝑥1).

• Remaining Election public Key: 𝐸𝐿𝑝𝑘
1

• Election public key: 𝐸𝐿𝑝𝑘.

and does the following actions:

1) Validate the signature of the output of the previous Control Components using the 𝐶𝐶𝑀1 signing

public key (𝑝𝑘𝐶𝐶𝑀1
𝑠).

2) Validate the certificate chain [𝐶𝐶𝑀1 signing certificate, 𝐶𝐶𝑀1 CA, and Platform Root CA].

3) Mix the Partially Decrypted Ballot Box 𝐶𝐶𝑀1:

a) Call the ElGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box 𝐶𝐶𝑀1. The result is the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀1.

b) For each ciphertext in the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀1 , call the

ElGamal Re-encryption primitive with input the ciphertext and the remaining Election

Key: 𝐸𝐿𝑝𝑘
1 . The result is the permuted and re-encrypted Partially Decrypted Ballot Box

𝐶𝐶𝑀1.

4) Create a Mixed Ballot Box 𝐶𝐶𝑀2 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of shuffled and re-

encrypted votes.

Scytl sVote

Protocol Specifications

111

5) Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate

that the shuffled and re-encrypted votes in the Mixed Ballot Box 𝐶𝐶𝑀2 are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (𝑏𝑏𝑖𝑑).

6) For each ciphertext in the Mixed Ballot Box 𝐶𝐶𝑀2, call the ElGamal decryption primitive with

input the ciphertext and the Control Component 𝐶𝐶𝑀2 Mixing private key (𝑥2).

7) Create a Partially Decrypted Ballot Box 𝐶𝐶𝑀2 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of

partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box 𝐶𝐶𝑀2 , call the Decryption proof

generation primitive with the following inputs:

a) Control Component 𝐶𝐶𝑀2 Mixing public key (𝑔𝑥2).

b) Ciphertext.

c) Partially decrypted ciphertext.

d) Control Component 𝐶𝐶𝑀2 Mixing private key (𝑥2).

e) Mathematical group.

The output is the decryption proofs 𝜋𝑑𝑒𝑐2.

9) When votes are partially decrypted, the contribution of the 𝐶𝐶𝑀2 Mixing private key (𝑥2) in the

Election key is removed. This means that the next Control Component performs the mixing

using the remaining Election key and this key is computed in the 𝐶𝐶𝑀2:

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦: 𝐸𝐿𝑝𝑘
1 = (𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

13
𝑗=1 · 𝑔−𝑥1

1
, 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

23
𝑗=1 · 𝑔−𝑥1

2
, … , 𝑔𝐸𝐵𝑠𝑘+∑ 𝑥𝑗

𝑚3
𝑗=1 · 𝑔−𝑥1

𝑚
)

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦: 𝐸𝐿𝑝𝑘
2 = (𝑔𝐸𝐵𝑠𝑘+𝑥2

1+𝑥3
1
· 𝑔−𝑥2

1
, 𝑔𝐸𝐵𝑠𝑘+𝑥2

2+𝑥3
2
· 𝑔−𝑥2

2
, … , 𝑔𝐸𝐵𝑠𝑘+𝑥2

𝑚+𝑥3
𝑚
· 𝑔−𝑥2

𝑚
)

= (𝑔𝐸𝐵𝑠𝑘+𝑥3
1
, 𝑔𝐸𝐵𝑠𝑘+𝑥3

2
, … , 𝑔𝐸𝐵𝑠𝑘+𝑥3

𝑚
)

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp

together with the Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot Box 𝐶𝐶𝑀2, the Partially

Decrypted Ballot Box 𝐶𝐶𝑀2, the Mixing proof, the Decryption proofs, the Remaining Election

Key, the Election Event ID (𝑒𝑒𝑖𝑑), the Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control

Component, using the 𝐶𝐶𝑀2 signing private key (𝑠𝑘𝐶𝐶𝑅𝑗
𝑠).

11) The following information is sent to the next Control Component:

a) Mixed Ballot Box 𝐶𝐶𝑀2 and mixing proof.

b) Partially Decrypted Ballot Box 𝐶𝐶𝑀2 and decryption proofs.

c) Remaining Election public keys: 𝐸𝐿𝑝𝑘
1 , 𝐸𝐿𝑝𝑘

2

d) 𝐶𝐶𝑀2 Mixing public key (𝑔𝑥2).

Scytl sVote

Protocol Specifications

112

e) 𝐶𝐶𝑀2 signing certificate and 𝐶𝐶𝑀2 CA certificate.

f) Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot Box

𝐶𝐶𝑀2, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixing proof, Decryption proofs, Remaining

Election Key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the

Control Component 𝐶𝐶𝑀2.

6.1.2.3 Third Control Component (𝑪𝑪𝑴𝟑)

The third Control Component 𝐶𝐶𝑀3 receives as input the following parameters:

• Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot Box 𝐶𝐶𝑀2 and Partially Decrypted Ballot Box

𝐶𝐶𝑀2.

• Mixing proof and Decryption proofs

• Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀1 , Mixed Ballot Box 𝐶𝐶𝑀2 ,

Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixing proof, Decryption proofs, Remaining Election Key,

Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control Component 𝐶𝐶𝑀2.

• 𝐶𝐶𝑀2 signing certificate, 𝐶𝐶𝑀2 CA certificate and Platform Root CA.

• 𝐶𝐶𝑀2 Mixing public key (𝑔𝑥2).

• Remaining Election public Key: 𝐸𝐿𝑝𝑘
1 , 𝐸𝐿𝑝𝑘

2

and does the following actions:

1) Validate the signature of the output of the previous Control Components using the 𝐶𝐶𝑀2 signing

certificate.

2) Validate Certificate chain [𝐶𝐶𝑀2 election signing, 𝐶𝐶𝑀2 CA, and Platform Root CA].

3) Mix the Partially Decrypted Ballot Box 𝐶𝐶𝑀2:

a) Call the ElGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box 𝐶𝐶𝑀2. The result is the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀2.

b) For each ciphertext in the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀2 , call the

ElGamal Re-encryption primitive with input the ciphertext and the remaining Election

Key: 𝐸𝐿𝑝𝑘
2 . The result is the permuted and re-encrypted Partially Decrypted Ballot Box

𝐶𝐶𝑀2.

4) Create a Mixed Ballot Box 𝐶𝐶𝑀3 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of shuffled and re-

encrypted votes.

5) Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate

that the shuffled and re-encrypted votes in the Mixed Ballot Box 𝐶𝐶𝑀3 are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (𝑏𝑏𝑖𝑑).

Scytl sVote

Protocol Specifications

113

6) For each ciphertext in the Mixed Ballot Box 𝐶𝐶𝑀3, call the ElGamal decryption primitive with

input the ciphertext and the Control Component 𝐶𝐶𝑀3 Mixing private key (𝑥3).

7) Create a Partially Decrypted Ballot Box 𝐶𝐶𝑀3 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of

partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box 𝐶𝐶𝑀3 , call the Decryption proof

generation primitive with the following inputs:

a) Control Component 𝐶𝐶𝑀3 Mixing public key (𝑔𝑥3).

b) Ciphertext.

c) Partially decrypted ciphertext.

d) Control Component 𝐶𝐶𝑀3 Mixing private key (𝑥3).

e) Mathematical group.

The output is the decryption proofs 𝜋𝑑𝑒𝑐3.

9) Notice that when votes are partially decrypted the contribution of the 𝐶𝐶𝑀3 Mixing private key

(𝑥3).in the Election key is removed. In this case, the remaining Election key will be directly the

Electoral board public key (𝐸𝐵𝑝𝑘). and it is not necessary to compute it.

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp

together with the Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixed Ballot Box 𝐶𝐶𝑀3, the Partially

Decrypted Ballot Box 𝐶𝐶𝑀3, the Mixing proof, the Decryption proofs, the Remaining Election

Key, the Election Event ID (𝑒𝑒𝑖𝑑), the Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control

Component, using the 𝐶𝐶𝑀3 signing private key (𝑠𝑘𝐶𝐶𝑀3
𝑠).

11) The following information is sent to the next Control Component:

a) Mixed Ballot Box 𝐶𝐶𝑀3 and mixing proof

b) Partially Decrypted Ballot Box 𝐶𝐶𝑀3 and decryption proofs

c) 𝐶𝐶𝑀3 Mixing public key (𝑔𝑥3)

d) 𝐶𝐶𝑀3 signing certificate and 𝐶𝐶𝑀3 CA certificate

e) Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixed Ballot Box

𝐶𝐶𝑀3, Partially Decrypted Ballot Box 𝐶𝐶𝑀3, Mixing proof, Decryption proofs, Election

Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control Component 𝐶𝐶𝑀3.

6.1.2.4 AuditorVerify algorithm

Before performing the last mixing and decryption in the last Control Component 𝐶𝐶𝑀4, blocks 1, 2 and

3 from the Verifier tool [3] must be run (except the ones requiring the data provided by the offline control

component) in order to ensure the privacy of the process.

Scytl sVote

Protocol Specifications

114

This tool will receive as input the following information:

• Ballot Box, Mixed Ballot Box 𝐶𝐶𝑀1 , Partially Decrypted Ballot Box 𝐶𝐶𝑀1 , Mixed Ballot Box

𝐶𝐶𝑀2, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixed Ballot Box 𝐶𝐶𝑀3, Partially Decrypted Ballot

Box 𝐶𝐶𝑀3

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Mixing and Decryption proofs

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Mixing public keys (𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑥3).

• Election public key (𝐸𝐿𝑝𝑘).

• Remaining Election public Keys: 𝐸𝐿𝑝𝑘
1 , 𝐸𝐿𝑝𝑘

2

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Signing Certificates

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 CA Certificates

• Platform Root CA

• Election Information Signing Certificate

• Signature of the timestamp, Cleansed Ballot Box , Mixed Ballot Box 𝐶𝐶𝑀1, Partially Decrypted

Ballot Box 𝐶𝐶𝑀1 , Mixing proof, Decryption proofs, Remaining Election public Key, Election

public key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control

Component 𝐶𝐶𝑀1Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot

Box 𝐶𝐶𝑀2, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixing proof, Decryption proofs, Remaining

Election public key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the

Control Component 𝐶𝐶𝑀2.

• Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀2 , Mixed Ballot Box 𝐶𝐶𝑀3 ,

Partially Decrypted Ballot Box 𝐶𝐶𝑀3, Mixing proof, Decryption proofs, Election Event ID (𝑒𝑒𝑖𝑑),

Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control Component 𝐶𝐶𝑀3.

and will perform the following validations:

• Validate Certificate chains [𝐶𝐶𝑀𝑗 signing certificate, 𝐶𝐶𝑀𝑗 CA, and Platform Root CA].

• Validate Certificate chain [Election Information Signing Certificate, Platform Root CA]

• Validate the signature of the output of the previous Control Components using the

corresponding 𝐶𝐶𝑀𝑗 signing certificate.

• Validate the signature of the Cleansed Ballot Box using the Election Information Signing

Certificate.

• Validate 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Mixing proofs.

• Validate 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Decryption proofs.

Scytl sVote

Protocol Specifications

115

In case all the validations are successful, the process continues and the mixing and decryption in the

last node are executed. Nevertheless, if some of the validations fail, the process is stopped since either

the Voting Server or one of the Control Components have misbehaved.

6.1.2.5 Offline Control Component (𝑪𝑪𝑴𝟒)

The last Control Component 𝐶𝐶𝑀4 receives as input the output of the previous Control Components:

• Cleansed Ballot Box, Mixed Ballot Box 𝐶𝐶𝑀1, Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot

Box 𝐶𝐶𝑀2, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixed Ballot Box 𝐶𝐶𝑀3, Partially Decrypted

Ballot Box 𝐶𝐶𝑀3.

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Mixing and Decryption proofs.

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Mixing public keys (𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑥3).

• Election public key (𝐸𝐿𝑝𝑘).

• Remaining Election public keys: 𝐸𝐿𝑝𝑘
1 , 𝐸𝐿𝑝𝑘

2

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 Signing Certificates.

• 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 CA Certificates.

• Platform Root CA.

• Election Information Signing Certificate.

• Signature of the timestamp, Cleansed Ballot Box , Mixed Ballot Box 𝐶𝐶𝑀1, Partially Decrypted

Ballot Box 𝐶𝐶𝑀1 , Mixing proof, Decryption proofs, Remaining Election public key, Election

public key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control

Component 𝐶𝐶𝑀1Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀1, Mixed Ballot

Box 𝐶𝐶𝑀2, Partially Decrypted Ballot Box 𝐶𝐶𝑀2, Mixing proof, Decryption proofs, Remaining

Election public key, Election Event ID (𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the

Control Component 𝐶𝐶𝑀2.

• Signature of the timestamp, Partially Decrypted Ballot Box 𝐶𝐶𝑀2 , Mixed Ballot Box 𝐶𝐶𝑀3 ,

Partially Decrypted Ballot Box 𝐶𝐶𝑀3, Mixing proof, Decryption proofs, Election Event ID (𝑒𝑒𝑖𝑑),

Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Control Component 𝐶𝐶𝑀3.

And does the following actions:

1) The Electoral Board private key (𝐸𝐵𝑠𝑘) is reconstructed from the shares. If the Electoral Board

private key has multiple components, all of them are reconstructed.

2) Validate the signature of the output of the previous Control Component using the corresponding

𝐶𝐶𝑀𝑗 signing public key (𝑝𝑘𝐶𝐶𝑀𝑗
𝑠).

3) Validate Certificate chains [𝐶𝐶𝑀𝑗 signing certificate, 𝐶𝐶𝑀𝑗 CA, and Platform Root CA].

Scytl sVote

Protocol Specifications

116

4) Mix the Partially Decrypted Ballot Box 𝐶𝐶𝑀3:

a) Call the ElGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box 𝐶𝐶𝑀3. The result is the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀3.

b) For each ciphertext in the permuted Partially Decrypted Ballot Box 𝐶𝐶𝑀3 , call the

ElGamal Re-encryption primitive with input the ciphertext and the Electoral Board public

key (𝐸𝐵𝑝𝑘). The result is the permuted and re-encrypted Partially Decrypted Ballot Box

𝐶𝐶𝑀3.

5) Create a Mixed Ballot Box 𝐶𝐶𝑀4 with the Ballot Box ID (𝑏𝑏𝑖𝑑) and the set of shuffled and re-

encrypted votes.

6) Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate

that the shuffled and re-encrypted votes in the Mixed Ballot Box 𝐶𝐶𝑀4 are the same that those

in the Partially Decrypted Ballot Box 𝐶𝐶𝑀3. Put them in a file together with the corresponding

Ballot Box ID (𝑏𝑏𝑖𝑑).

7) For each ciphertext in each Mixed Ballot Box 𝐶𝐶𝑀4:

a) Call the ElGamal decryption primitive with input the ciphertext and the reconstructed

Electoral Board private key (𝐸𝐵𝑠𝑘). The result is a product of primes representing a set

of voting options and if write-ins are allowed by the election, the process will also

recover as many elements as write-ins are specified in the ballot. The result is a product

of primes representing a set of voting options and if write-ins are allowed by the election,

the process will also recover as many elements as write-ins are specified in the ballot.

b) Generate a decryption proof calling the Decryption proof generation primitive with the

following inputs:

i. Electoral Board public key (𝐸𝐵𝑝𝑘).

ii. Ciphertext.

iii. Plaintext.

iv. Electoral Board private key (𝐸𝐵𝑠𝑘).

v. Mathematical group.

c) The product of primes is factorized according to the vote option values and the election

rules present in the ballot indicated by the Ballot Box Voter Data. The voting options

are recovered, and the following vote correctness validations are done using the

decryptedCorrectnessRule defined in the ballot:

i. The minimum selected options, excluding blank selections, is equal to, or

greater than, the minimum established (except if allow blank vote is set to true

and the whole vote is blank).

Scytl sVote

Protocol Specifications

117

ii. The maximum selected options, including blank selections, is equal to, or less

than, the maximum established.

iii. The number of times that a candidate has been selected, including candidates

that belong to more than one list, is not greater than the contest’s accumulation

value.

iv. There is no option representation (different from real candidates) that has been

selected more than once.

These correctness validations are already performed during the voting phase and

therefore, a ballot that has been successfully stored in the ballot box, cleansed, mixed

and decrypted is always supposed to pass these checks.

d) If write-ins are present in the decrypted vote, the decrypted values have to be converted

back to text:

i. Compute √𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑜𝑑 𝑝

ii. Convert the result to UTF-8 representation.

The write-in texts are recovered, and the following vote correctness validations are

done:

i. The text used for write-ins does not include the special character #

ii. The representation of the write-in is included (by the system, not by the voter)

next to the written-in text, separated by #.

iii. In case the voter has used the write-in for voting for an option, the recovered

write-in will be a text. Otherwise, if the write-in has not been used, the recovered

value will be the number 2. This is done because the ciphertext corresponding

to the encrypted partial choice return codes must have the same number of

elements for every voter whether they have filled in the write-ins or not.

8) Generate the following lists for each Mixed Ballot Box, each one containing the Ballot Box ID

(𝑏𝑏𝑖𝑑):

a) List of encrypted votes, decrypted votes and proofs of correct decryption.

b) List of decrypted votes for which factorization errors happened and result of the

factorization (up to the point they were factorized). Usually these errors should not

happen since the value encrypted by the voting client is the product of valid prime

numbers included in the ballot.

c) List of decrypted votes for which converting error happened, and the result of the

decryption (If write-ins are present).

Scytl sVote

Protocol Specifications

118

d) List of individual voting option values per each decrypted vote (for the votes that could

be factorized) and the write-in text messages (if write-ins are present in the decrypted

vote).

9) The Administration Board private key (𝐴𝐵𝑠𝑘) is reconstructed from the shares.

10) For each of the lists, a timestamp is generated, and it is signed together with the list and the

Ballot Box ID (𝑏𝑏𝑖𝑑) and an identifier of the Decryption process, using the Administration Board

private key (𝐴𝐵𝑠𝑘).

6.2 Ballot Box export

After the mixing and decryption is done in 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 the outputs are downloaded to the

last node to perform the final mixing and decryption, as it is explained in the previous section.

Additionally, the output of the cleansing and the whole ballot box are signed using the Ballot Box Signer

private key (𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑) and downloaded.

• Generate a timestamp taking the current time as value. Call the Digital signature generation

primitive to sign the list of successful votes, the Closing Timestamp, the Election Event ID

(𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and Tenant ID using the Ballot Box Signer private key (𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑)

• Generate a timestamp taking the current time as value. Call the Digital signature generation

primitive to sign the list of non-confirmed votes, the Closing Timestamp, the Election Event ID

(𝑒𝑒𝑖𝑑), Ballot Box ID (𝑏𝑏𝑖𝑑) and Tenant ID using the Ballot Box Signer private key (𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑)

• Generate a timestamp taking the current time as value. Call the Digital signature generation

primitive to sign the whole Ballot Box, the Closing Timestamp, the Election Event ID (𝑒𝑒𝑖𝑑),

Ballot Box ID (𝑏𝑏𝑖𝑑), the Ballot ID (𝑏𝑖𝑑) and Tenant ID using the Ballot Box Signer private key

(𝐵𝐵𝑠𝑠𝑘
𝑏𝑏𝑖𝑑).

Scytl sVote

Protocol Specifications

119

Ballot Box

Contains one row per vote with the following information:

- List of IDs: Tenant ID, Election Event ID (𝒆𝒆𝒊𝒅), Ballot ID (𝒃𝒊𝒅), Ballot Box ID (𝒃𝒃𝒊𝒅), Voting

Card ID (𝒗𝒄𝒅𝒊𝒅), Credential ID (𝒄𝒊𝒅), Verification Card ID (𝒗𝒄𝒊𝒅), Verification Card Set ID (𝒗𝒄𝒔𝒊𝒅)

- Encrypted vote (encrypted options, encrypted partial choice codes and encrypted write ins)

and its signature

- Correctness IDs

- Verification Card Public Key (𝑲𝒊𝒅) and its signature

- Authentication Token and its signature

- Proofs: Schnorr proof (𝝅𝒔𝒄𝒉) , Exponentiation proof (𝝅𝒆𝒙𝒑) and Plaintext Equality proof

(𝝅𝒑𝒍𝒆𝒒𝒆𝒏𝒄)

- Ciphertext exponentiations

- Credential ID signing certificate

- Receipt and its signature

- Choice Return Codes Computations

- Vote Cast Return Code Computations

- Vote Cast Code and its signature

Table 30 - Ballot Box

Scytl sVote

Protocol Specifications

120

7 Audit phase (VerifyTally algorithm)

The following steps must be validated by the auditors in order to verify that the election results accurately

reflect the intention of legitimate voters:

1) Configuration

a) Check the encryption parameters

b) Check the voting options

c) Check the number of authentication data generated

2) Ballot Box

a) Verify the vote signature.

b) Verify the zero-knowledge proofs

i. Control Components proofs, computed during the exponentiation of the

encrypted partial choice return codes, the partial decryption of the encrypted

pre-choice return codes and the exponentiation of the confirmation message.

3) Control Components Secure Logs: (check their consistency with the contents of the Ballot Box):

a) Verify logs integrity and logs authenticity.

b) Verify that all the votes stored in the Ballot Box have been processed by the Control

Components.

c) Verify that all the votes processed by the Control Components are stored in the Ballot

Box.

d) Verify that all the confirmations stored in the Ballot Box have been processed by the

Control Components.

e) Verify that all the confirmations processed by the Control Components are stored in the

Ballot Box.

f) Verify that the Choice Return Codes have been computed only once per voter.

g) Verify that the Vote Cast Return Code has been computed, at most, 5 times.

4) Cleansing

a) Verify that only confirmed votes have been considered.

b) Verify that no confirmed votes have been removed.

5) Mixing and Decryption

a) Verify the mixing and decryption proofs to ensure that no votes have been modified,

added or removed during the mixing and decryption processes.

Scytl sVote

Protocol Specifications

121

b) Verify the signature of each Mixing Control Component output.

6) Vote factorization

a) Verify that the result of the factorization corresponds to valid options in the election.

In order to perform all these validations, an auditor can use the specification given in [4] to implement

their own verifications, or use a software called Verifier [3] to check that the election outcome is correct.

This Verifier tool groups the verifications in four blocks:

1. Block 1: Pre-Election Verification: used to validate step 1).

2. Block 2: Ballot Box Verification: used to validate steps 2) and 3).

3. Block 3: Mixing Decryption Verification: used to validate steps 4), 5) and 6).

4. Block 4: Result Verification: used to validate correctness of the tallying and the consolidated

end results. As the results consolidation is not part of the voting protocol, it is not specified in

this document.

Scytl sVote

Protocol Specifications

122

8 References

[1] S. F. Chancellery, "Federal Chancellery Ordinance on Electronic Voting (VEleS)," 2018.

[2] S. F. Chancellery, "Annex of the Federal Chancellery Ordinance on Electronic Voting," 2018.

[3] Swisspost, "Verifier_Detailed_specifications," 2018.

[4] Scytl, "Scytl sVote Auditability with Control Components_3.0," 2018.

[5] PKCS #1 v2.2: RSA Cryptography Standard.

[6] S. Bayer and J. Groth, "Efficient Zero-Knowledge Argument for Correctness of a Shuffle," in

Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012.

[7] D. Chaum and T. Pedersen, "Wallet Databases with Observers.," in Advances in Cryptology -

CRYPTO ' 92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,

1992.

[8] A. Shamir, "How to Share a Secret," in Communications of ACM, 1979.

[9] U. Maurer, "Unifying Zero-Knowledge Proofs of Knowledge," in Progress in Cryptology -

AFRICACRYPT 2009: Second International Conference on Cryptology in Africa, Gammarth,

Tunisia, 2009.

[10] NIST. FIPS PUB 180-4. Seure Hash Standard (SHS), August, 2015.

[11] NIST. FIPS PUB 198-1. The Keyed-Hash Message Authentication Code (HMAC), July: 2008.

[12] NIST. FIPS PUB 197. Advanced Encryption Standard (AES), November, 2001.

[13] NIST. SP 800-38D. Recommendation for Block Cipher Modes of Operation : Galois/Counter Mode

(GCM) and GMAC, November, 2007.

[14] T. Koshiba and K. Kurosawa, "Short Exponent Diffie-Hellman Problems," in Public Key

Cryptography - PKC 2004, 2004.

[15] Scytl, "PRO_SP_RS_Audit_Protocol_Control_Components_3.1," 2018.

Scytl sVote

Protocol Specifications

123

9 Appendix

9.1 Cryptographic primitives

9.1.1 RSA Key pair generation

Input

• Key length: 2048 bits.

Operation

• The RSA key pair is computed according to the standard PKCS#1 v2.2 [5] with two prime

factors .

Output

• RSA key pair.

9.1.2 ElGamal Key pair generation

Input

• The mathematical group defined by (𝑝, 𝑞, 𝑔).

• The max number N of elements composing the key pair.

Operation

• Generate N random exponents (𝑠𝑘1, … , 𝑠𝑘𝑁) smaller than the value of 𝑞 using the Random

value generation primitive. These random exponents are the private key: 𝑠𝑘 = (𝑠𝑘1, … , 𝑠𝑘𝑁).

• Compute 𝑝𝑘1 = 𝑔
𝑠𝑘1 , 𝑝𝑘2 = 𝑔

𝑠𝑘2 , … , 𝑝𝑘𝑁 = 𝑔
𝑠𝑘𝑁 all of them modulo p.

• The result is the public key 𝑝𝑘 = (𝑝𝑘1, … , 𝑝𝑘𝑁).

Output

• The ElGamal key pair (𝑝𝑘, 𝑠𝑘).

9.1.3 X509 certificate generation

Input

• CA (issuer) Private Signing Key.

• Public Key.

• Subject: Common Name, Organization, Organizational Unit and Country.

• Issuer: Common Name, Organization, Organizational Unit and Country.

• Key type.

• Validity period.

Scytl sVote

Protocol Specifications

124

• Signature algorithm: RSA-PSS, SHA256, Key length: 2048 bits, Provider: SUN/Forge.

Operation

• Compose the issuer of the certificate using the issuer information provided:

o Common name

o Organization

o Organizational unit

o Country

• Compose the subject of the certificate using the subject information provided:

o Common name

o Organization

o Organizational unit

o Country

• Create a serial number:

o Call the Random value generation with input: type=byte, number=20.

• Create certificate extensions:

o Basic Constraints:

▪ In case key type is “CA”, flag CA=true

▪ In case key type is not “CA”, flag CA=false

o Key usage:

▪ In case key type is “CA”, key usage= keycertSign, cRLSign.

▪ In case key type is “Sign”, key usage= digitalSignature, nonRepudiation.

▪ In case key type is “Encryption”, key usage= keyEncipherment,

dataEncipherment.

• Create the public key information using:

o The public key.

o The algorithm for which its use is intended.

• Compose the to-be-signed (tbs) content of the certificate, using:

o Issuer

o Subject

Scytl sVote

Protocol Specifications

125

o Serial number

o Version number

o Validity period

o Public key information

o Certificate extensions

• Call the Digital signature generation primitive to sign the tbs of the certificate using the CA

(issuer) private key, according to the defined algorithm and provider.

• Compose the X.509 certificate using the tbs content, the signature algorithm, and the signature

value.

Output

• X.509 Certificate

9.1.4 Schnorr proof generation

Input

• Base element (group element)

• Exponent

• Public input (group element)

• Additional information

• Mathematical group

Operation

• Call the Maurer’s Unified Proofs Prover primitive with the following inputs:

o Mathematical group

o The function PHI defined by:

▪ Number of inputs = number of exponents = 1

▪ Number of outputs = number of elements of the public input array = 1

▪ Base element

▪ Computation rules [(1,1)]

o Input data:

▪ An array of 1 group element = [Public input]

▪ An array of 1 exponent = [Exponent]

Scytl sVote

Protocol Specifications

126

▪ Auxiliary string = additional information

• The result is the Schnorr Proof.

Output

• Schnorr proof

9.1.5 Exponentiation proof generation

Input

• Base Elements array of length 𝑘

• Exponent

• Public Input array of length 𝑘

• Additional information

• Mathematical group

Operation

• Call the Maurer’s Unified Proofs Prover primitive with the following inputs:

o Mathematical group

o The function PHI defined by:

▪ Number of inputs = number of exponents = 1

▪ Number of outputs = number of elements of the public input array = 𝑘

▪ Base elements

▪ Computation rules [(1,1); (2,1); … ; (𝑘, 1)]

o Input data:

▪ An array of 𝑘 group element = [Public input]

▪ An array of 1 exponent = [Exponent]

▪ Auxiliary string = additional information

• The result is the Exponentiation proof.

Output

• Exponentiation proof

9.1.6 Plaintext Equality proof generation

Input

• Primary Ciphertext containing 𝑘 + 1 elements for some non-fixed 𝑘 (𝑘 must be at least 1):

[𝐶0, 𝐶1, … , 𝐶𝑘].

Scytl sVote

Protocol Specifications

127

• Primary public key (which consists of 𝑘 group elements).

• Primary randomness.

• Secondary Ciphertext containing 𝑘 + 1 elements [𝐷0, 𝐷1, … , 𝐷𝑘].

• Secondary public key (which consists of 𝑘 group elements).

• Secondary randomness.

• Additional information.

• Mathematical group.

Operation

• Consider the last 𝑘 elements of the Primary Ciphertext and the last 𝑘 elements of the Secondary

Ciphertext. Call them the Primary SubCiphertext [𝐶1, … , 𝐶𝑘]and Secondary SubCiphertext

[𝐷1, … , 𝐷𝑘] respectively.

• For each 𝑖 from 1 to 𝑘 compute 𝐶𝑖 · (𝐷𝑖)
−1 𝑚𝑜𝑑 𝑝. The result is the Divided Ciphertext, which

consists of 𝑘 group elements.

• Compute the inverse of each element of the Secondary public key (the inverse is computed in

the mathematical group). Call the result Secondary Inverted public key.

• Call the Maurer’s Unified Proofs Prover primitive with the following inputs:

o Mathematical group.

o The function PHI defined by:

▪ Number of inputs = number of exponents =

[𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠, 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠]

▪ Number of outputs = number of elements of the public input array = [𝐶0, 𝐷0, 𝐶1 ·

(𝐷1)
−1, … , 𝐶𝑘 · (𝐷𝑘)

−1]

▪ Base elements: [𝑔, 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦]

▪ Computation rules [(1,1); (1,2); (2,1), (2 + 𝑘, 2); (3,1), (3 + 𝑘, 2); … ; (𝑘 +

1,1), (2𝑘 + 1,2)]

o Input data:

▪ An array of 𝑘 + 2 group element = [𝐶0, 𝐷0, 𝐶1 · (𝐷1)
−1, … , 𝐶𝑘 · (𝐷𝑘)

−1]

▪ An array of 2 exponent = [𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠, 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠]

▪ Auxiliary string = additional information

• The result is the Plaintext Equality Proof.

Scytl sVote

Protocol Specifications

128

Output

• Plaintext equality proof

9.1.7 Mixing proof generation

Based on Bayer and Groth proof of a shuffle [6].

Note: This is a specification for implementing the shuffle proof, matrices rows in the original paper are

considered columns in this description and columns are considered rows.

Input

• 𝑚, 𝑛

• List of encrypted votes 𝐶 = {𝐶𝑖}𝑖=1
𝑁

• List of re-encrypted and permuted votes 𝐶′ = {𝐶𝑖
′}𝑖=1
𝑁 (where 𝐶𝑖

′ = 𝐶𝜋(𝑖)ℰ𝑝𝑘(1; 𝜌𝑖))

• List of re-encryption parameters �⃗� = {𝜌𝑖}𝑖=1
𝑁

• Permutation �⃗� = {𝑎1, … , 𝑎𝑁} = {𝜋(1), … , 𝜋(𝑁)}

• Mathematical group (𝑝, 𝑞, 𝑔)

• Public key used to encrypt the votes: 𝑝𝑘

Operation

1. Generate the commitment key 𝑐𝑘:

o Generate a group element using the Group element generation primitive with input the

mathematical group (𝑝, 𝑞, 𝑔). The result is 𝐻.

o Generate as many group elements as 𝑛 using the Group element generation primitive

with input the mathematical group (𝑝, 𝑞, 𝑔). The result is 𝐺1, … , 𝐺𝑛.

The commitment key is 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻).

2. Given the permutation �⃗� = {𝑎1, … , 𝑎𝑁} arrange it in a matrix of 𝑚 rows and 𝑛 columns:

𝐴 = (

𝑎1 ⋯ 𝑎𝑛
⋮ ⋱ ⋮

𝑎(𝑚−1)·𝑛+1 ⋯ 𝑎𝑁
) = (

𝐴1⃗⃗⃗⃗⃗

⋮

𝐴𝑚⃗⃗ ⃗⃗ ⃗⃗
)

3. Commit to each row 𝐴𝑖 (for 𝑖 = 1,… ,𝑚) of the permutation matrix 𝐴 using the Commitment

generation primitive with the following inputs:

o A random exponent 𝑟𝑖 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

o List of elements to be committed: 𝐴𝑖⃗⃗ ⃗⃗

o Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Scytl sVote

Protocol Specifications

129

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(𝐴𝑖⃗⃗ ⃗⃗ ; 𝑟𝑖).

After committing to all the rows, define the vector of commitments as

𝑐𝐴 = (𝑐𝑜𝑚𝑐𝑘(𝐴1⃗⃗⃗⃗⃗ ; 𝑟1), … , 𝑐𝑜𝑚𝑐𝑘(𝐴𝑚⃗⃗ ⃗⃗ ⃗⃗ ; 𝑟𝑚)) and the vector of randomness as 𝑟 = (𝑟1, … 𝑟𝑚).

4. Given the list of encrypted votes 𝐶 arrange them in a matrix of 𝑚 rows and 𝑛 columns:

(

𝐶1 ⋯ 𝐶𝑛
⋮ ⋱ ⋮

𝐶(𝑚−1)·𝑛+1 ⋯ 𝐶𝑁

) = (
𝐶1
⋮

𝐶𝑚

)

5. Given the list of encrypted votes 𝐶′ arrange them in a matrix of 𝑚 rows and 𝑛 columns:

(

𝐶1
′ ⋯ 𝐶𝑛

′

⋮ ⋱ ⋮
𝐶(𝑚−1)·𝑛+1
′ ⋯ 𝐶𝑁

′
) = (

𝐶1
′

⋮

𝐶𝑚
′

)

6. Concatenate the values of 𝐶, 𝐶′ and 𝑐𝐴 in the following way:

o For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

o For each element in 𝐶′ convert it to a string and concatenate all of them in a single

value.

o For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝐶|𝐶′|𝑐𝐴).

7. Given 𝑥 and the permutation �⃗� = {𝑎1, … , 𝑎𝑁}, compute the exponentiation of 𝑥 to each element

on �⃗�: 𝑥𝑎𝑖 𝑚𝑜𝑑 𝑝. The result is �⃗⃗� = {𝑏1, … , 𝑏𝑁} = {𝑥
𝑎1 , … , 𝑥𝑎𝑁 }.

8. Given �⃗⃗� arrange it in a matrix of 𝑚 rows and 𝑛 columns:

𝐵 = (

𝑏1 ⋯ 𝑏𝑛
⋮ ⋱ ⋮

𝑏(𝑚−1)·𝑛+1 ⋯ 𝑏𝑁

) = (
𝐵1⃗⃗⃗⃗⃗

⋮

𝐵𝑚⃗⃗ ⃗⃗ ⃗⃗
)

9. Commit to each row 𝐵𝑖⃗⃗⃗⃗ (for 𝑖 = 1,… ,𝑚) using the Commitment generation primitive with the

following inputs:

o A random exponent 𝑠𝑖 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

o List of elements to be committed: 𝐵𝑖⃗⃗⃗⃗

o Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Scytl sVote

Protocol Specifications

130

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(𝐵𝑖⃗⃗⃗⃗ ; 𝑠𝑖).

After committing to all the rows, define the vector of commitment as 𝑐𝐵 =

(𝑐𝑜𝑚𝑐𝑘(𝐵1⃗⃗⃗⃗⃗ ; 𝑠1),… , 𝑐𝑜𝑚𝑐𝑘(𝐵𝑚⃗⃗ ⃗⃗ ⃗⃗ ; 𝑠𝑚)) and the vector of randomness as 𝑠 = (𝑠1, … 𝑠𝑚).

10. Concatenate the values of 𝐶, 𝐶′,𝑐𝐴 and 𝑐𝐵 in the following way:

o For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

o For each element in 𝐶′ convert it to a string and concatenate all of them in a single

value.

o For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

o For each element in 𝑐𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑦 = 𝐻𝑎𝑠ℎ(𝐶|𝐶′|𝑐𝐴|𝑐𝐵).

11. Concatenate the values of 𝐶, 𝐶′,𝑐𝐴, 𝑐𝐵 and the number 1 in the following way:

o For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

o For each element in 𝐶′ convert it to a string and concatenate all of them in a single

value.

o For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

o For each element in 𝑐𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the number

1 and compute a hash of the concatenation. Call the result 𝑧 = 𝐻𝑎𝑠ℎ(𝐶|𝐶′|𝑐𝐴|𝑐𝐵|1).

12. For each element in �⃗� and �⃗⃗� compute the following values:

𝑑1 = 𝑦 · 𝑎1 + 𝑏1
⋮
⋮

𝑑𝑁 = 𝑦 · 𝑎𝑁 + 𝑏𝑁

 The result is 𝑑 = (𝑑1, … 𝑑𝑁).

13. For each element in 𝑑 compute:

𝑑1 − 𝑧
⋮

𝑑𝑁 − 𝑧

Scytl sVote

Protocol Specifications

131

b𝑃𝐴𝑟𝑔 =∏(𝑑𝑖 − 𝑧)

𝑁

𝑖=1

arrange it in a matrix of 𝑚 rows and 𝑛 columns

𝐴𝑃𝐴𝑟𝑔 = (

𝑑1 − 𝑧 ⋯ 𝑑𝑛 − 𝑧
⋮ ⋱ ⋮

𝑑(𝑚−1)·𝑛+1 − 𝑧 ⋯ 𝑑𝑁 − 𝑧
) = (

𝐴1
𝑃𝐴𝑟𝑔

⋮

𝐴𝑚
𝑃𝐴𝑟𝑔

)

14. For each element in 𝑟 and 𝑠 compute the following values:

𝑡1 = 𝑦 · 𝑟1 + 𝑠1
⋮

𝑡𝑚 = 𝑦 · 𝑟𝑚 + 𝑠𝑚

The result is 𝑡 = (𝑡1, … , 𝑡𝑚)

15. Generate 𝑚 commitments of the vector of length 𝑛 : (−𝑧, … ,−𝑧) using the Commitment

generation primitive with the following inputs:

o Exponent: 0

o List of elements to be committed: (−𝑧,… ,−𝑧)

o Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(−𝑧,…−, 𝑧 ; 0).

After computing all the commitments, define the vector of commitments as 𝑐−𝑧 =

(𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0), … , 𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0))

16. Compute the exponentiation of each element in 𝑐𝐴 to the hash value 𝑦: 𝑐𝐴
𝑦

17. Compute the product of each element in 𝑐𝐴
𝑦
 by the corresponding element in 𝑐𝐵 and obtain 𝑐𝐷:

𝑐𝐷 = 𝑐𝐴
𝑦
· 𝑐𝐵.

18. Compute the product of each element in 𝑐𝐷 by the corresponding element in 𝑐−𝑧: 𝑐𝐴
𝑃𝐴𝑟𝑔

= 𝑐𝐷𝑐−𝑧

19. In case 𝑚 = 1 the result of the operation above (𝑐𝐴
𝑃𝐴𝑟𝑔

), the matrix 𝐴𝑃𝐴𝑟𝑔 and the vector 𝑡, will

have only one element and the protocol will not work (more precisely, the Hadamard product

argument required by the Product argument). For this reason, the following modifications should

be done:

o Modify 𝑐𝐴
𝑃𝐴𝑟𝑔

:

▪ Generate a vector with 𝑛 elements filled with 1: (1,… ,1)

▪ Commit to the vector using the Commitment generation primitive with the

following inputs:

Scytl sVote

Protocol Specifications

132

• Exponent 0

• List of elements to be committed: (1, … ,1)

• Commitment key (𝐺1, … 𝐺𝑛 , 𝐻)

▪ Reconstruct the vector 𝑐𝐴
𝑃𝐴𝑟𝑔

 in the following way:

• The first element of the vector is the value already computed: 𝑐𝐷𝑐−𝑧

• The second element of the vector is the commitment of the vector:

(1, … ,1) computed in the step above.

o Modify 𝐴𝑃𝐴𝑟𝑔:

▪ As the matrix 𝐴𝑃𝐴𝑟𝑔 has only one row: 𝐴1
𝑃𝐴𝑟𝑔

, define a second row 𝐴2
𝑃𝐴𝑟𝑔

containing 𝑛 elements filled with 1: (1, … ,1)

𝐴𝑃𝐴𝑟𝑔 = (
𝑑1 − 𝑧 ⋯ 𝑑𝑛 − 𝑧

1 ⋯ 1
) = (

𝐴1
𝑃𝐴𝑟𝑔

𝐴2
𝑃𝐴𝑟𝑔)

o Modify 𝑡:

▪ As the vector 𝑡 has only element: 𝑡1, define a second element 𝑡2 = 0.

𝑡 = (𝑦 · 𝑟1 + 𝑠1, 0)

20. Use the Product argument with the following inputs:

o 𝑐𝐴
𝑃𝐴𝑟𝑔

o 𝐴𝑃𝐴𝑟𝑔

o 𝑡

o 𝒃𝑃𝐴𝑟𝑔 = ∏ (𝑑𝑖 − 𝑧)
𝑁
𝑖=1

o The commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑁, 𝐻).

21. Given the list of re-encryption parameters �⃗� and the vector �⃗⃗� compute 𝜌 = −�⃗� · �⃗⃗� = −∑ 𝜌𝑖
𝑁
𝑖=1 𝑏𝑖

22. Define the vector �⃗� = (𝑥1, … , 𝑥𝑁).

23. Compute the exponentiation of each element in 𝐶 to the corresponding element in �⃗�:

𝐶1
𝑥1

⋮

𝐶𝑁
𝑥𝑁

Compute the product of these values 𝐶𝑀𝐸𝑥𝑝𝐴𝑟𝑔 = ∏ 𝐶𝑖
𝑥𝑖𝑁

𝑖=1 .

24. Call the Multi-exponentiation argument with the following inputs:

Scytl sVote

Protocol Specifications

133

o 𝐶1
′ , … , 𝐶𝑚

′

o 𝐶𝑀𝐸𝑥𝑝𝐴𝑟𝑔

o 𝑐𝐵

o �⃗⃗�1, … , �⃗⃗�𝑚

o 𝑠

o 𝜌

o Mathematical group (𝑝, 𝑞, 𝑔)

o 𝑝𝑘

Output

The output of the proof will consist of the following values:

• initialMessage → 𝑐𝐴

• firstAnswer → 𝑐𝐵

• secondAnswer:

o msgPA → represents the initial message of Product Argument

▪ commitmentPublicB → 𝑐𝑏

▪ iniHPA → Initial message of Hadamard Product Argument

• commitmentPublicB → 𝑐𝐵

▪ ansHPA → Answer of Hadamard Product Argument

• initial → Initial message of Zero Argument

o commitmentPublicA0 → 𝑐𝐴0

o commitmentPublicBM → 𝑐𝐵𝑚

o commitmentPublicD → 𝑐𝐷

• answer → Answer of Zero Argument

o exponentsA → �⃗�

o exponentsB → �⃗⃗�

o exponentR → 𝑟

o exponentS → 𝑠

o exponentT → 𝑡

Scytl sVote

Protocol Specifications

134

• iniSVA → represents the initial message of Single Value Product

Argument

o commitmentPublicD → 𝑐𝑑

o commitmentPublicLowDelta → 𝑐𝛿

o commitmentPublicHighDelta → 𝑐∆

• ansSVA → represents the answer of Single Value Product Argument.

o exponentsTildeA → �̃�1, … , �̃�𝑛

o exponentsTildeB → �̃�1, … , �̃�𝑛

o exponentsTildeR → �̃�

o exponentsTildeS → �̃�

▪ iniMEBasic → initial message of multi-exponentiation argument

• commitmentPublicA0 → 𝑐𝐴0

• commitmentPublicB → {𝑐𝐵𝑘}𝑘=0
2𝑚−1

• ciphertextsE → {𝐸𝑘}𝑘=0
2𝑚−1

▪ ansMEBasic → answer of multi-exponentiation argument

• exponentsA → �⃗�

• exponentR → 𝑟

• exponentB → 𝑏

• exponentS → 𝑠

• randomnessTau → 𝜏

9.1.8 Decryption proof generation

Based in the Chaum-Pedersen protocol for proving equality of discrete logarithms [7].

Input

• Public key containing k elements for some non-fixed k (k must be at least 1): (𝑝𝑘1, … , 𝑝𝑘𝑘)

• Ciphertext containing k+1 elements: (𝐶0, 𝐶1, 𝐶2, … , 𝐶𝑘).

• Plaintext containing k elements: (𝑃1, 𝑃2, … , 𝑃𝑘)

• Private Key containing k elements: (𝑠𝑘1, … , 𝑠𝑘𝑘).

• Mathematical group

Scytl sVote

Protocol Specifications

135

Operation

• For each element in the ciphertext array, besides the first one, compute
𝐶𝑖
𝑃𝑖
⁄ in the

mathematical group, for 𝑖 = 1,… , 𝑘 . The result is the array of divided ciphertexts:

(𝐶′1, 𝐶′2, … , 𝐶′𝑘).

• Call the Maurer’s Unified Proofs Prover primitive with the following inputs:

1. Mathematical group

2. Function PHI

▪ Number of inputs = number of private key elements = 𝑘

▪ Number of outputs = 2𝑘

▪ Array of base elements = [𝑔 (𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑔𝑟𝑜𝑢𝑝), 𝐶0]

▪ Computation rules = [(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); … ; (1, 𝑘); (2, 𝑘)]

3. Input data

▪ An array 2𝑘 of group elements = [𝑝𝑘1, 𝐶′1, 𝑝𝑘2, 𝐶′2, … , 𝑝𝑘𝑘, 𝐶′𝑘].

▪ An array of exponents = (𝑠𝑘1, … , 𝑠𝑘𝑘)

▪ Auxiliary string = additional information

• The result is the decryption proof

Output

• Decryption proof

9.1.9 Shamir Threshold Secret Sharing split algorithm

This algorithm follows the specification from [8]:

Input

• A secret s

• A number of shares k

• A reconstruction threshold t

Operation

• Compute a primer number larger than s: this will be modulo r.

• Compute t-1 random positive integers 𝑎𝑖 between 1 and r-1, and let 𝑎0 be s.

• Build the polynomial 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑡−1𝑥

𝑡−1.

• Each share is computed as (𝑖, 𝑓(𝑖)) for 𝑖 = 1,… , 𝑘.

Scytl sVote

Protocol Specifications

136

Output

• List of shares (𝑖, 𝑓(𝑖)) for 𝑖 = 1,… , 𝑘.

9.1.10 Shamir Threshold Secret Sharing reconstruction algorithm

Input

• List of shares (𝑗, 𝑓(𝑗)) for j= 0,… , 𝑡 − 1.

Operation

• Compute Lagrange basis polynomials 𝑙𝑗 for 𝑗 = 0,… , 𝑡 − 1.

• Reconstruct the polynomial 𝑓(𝑥) as ∑ 𝑓(𝑗) · 𝑙𝑖(𝑥)
𝑡−1
𝑗=0 .

• Recover the secret as 𝑠 = 𝑓(0).

Output

• Secret s.

9.1.11 Random value generation

Input

• The object type (character, digital number, bytes or other)

• The length “n” of the object

Operation

Here we treat each object type in a different way:

• In case the object type is bytes (or bits, if required); the Secure Random objects already provide

methods to return random bytes (or bits).

• In case the object type is not bytes, do the following:

1. Define m to be the possible values that the object can take (for example, in case the

object type is a numeric digit, m=10).

2. Map every possible value that the object can take to a number between 0 and m-1.

3. Compute a random number r between 0 and mn-1. To do that:

▪ Find the integer i such that 2𝑖−1 − 1 < 𝑚𝑛 − 1 ≤ 2𝑖 − 1, generate i random bits

and convert those bits to an unsigned integer.

▪ If the resulting unsigned integer is strictly greater than mn-1, go to the previous

step.

▪ Otherwise, output such integer.

4. Let 𝑟0, 𝑟1, … , 𝑟𝑛−1 be the base m representation of r.

Scytl sVote

Protocol Specifications

137

5. Undo the map for each 𝑟𝑖.

6. Output the resulting symbols.

Output

• An object of the specified type and length.

9.1.12 ElGamal encryption

Input

• The mathematical group defined by (𝑝, 𝑞, 𝑔)

• Public key (𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑘) (array of length 𝑘 > 0)

• Plaintext (𝑚1, 𝑚2, … ,𝑚𝑛) of at most 𝑘 element and at least 1 element.

Operation

• The mathematical group defined by (𝑝, 𝑞, 𝑔)

• Generate a random exponent 𝑟 between 1 and 𝑞 − 1using the Random value generation

primitive.

• Generate the first element of the ciphertext 𝐶0 = 𝑔
𝑟 𝑚𝑜𝑑 𝑝.

• If the size of the plaintext is smaller than the size of the public key, compute

1. 𝑝𝑘𝑛 = 𝑝𝑘𝑛 + 𝑝𝑘𝑛+1 + 𝑝𝑘𝑛+2 +⋯+ 𝑝𝑘𝑘 where the value of 𝑝𝑘𝑛 on the right is the old

one and the value on the left is the one used from this point onwards.

• For each element in the plaintext, compute the following elements of the cihpertext: 𝐶𝑖 = (𝑝𝑘𝑖)
𝑟 ·

𝑚𝑖 𝑚𝑜𝑑 𝑝 for 𝑖 = 1,…𝑛.

Output

• The generated random exponent 𝑟

• The ciphertext (𝐶0, 𝐶1, … , 𝐶𝑛)

9.1.13 ElGamal decryption

Input

• The mathematical group defined by (𝑝, 𝑞, 𝑔)

• Private key (𝑠𝑘1, 𝑠𝑘2, … , 𝑠𝑘𝑘) (array of any length 𝑘 > 0).

• Ciphertext (𝐶0, 𝐶1, 𝐶2, … , 𝐶𝑛) of at most k+1 elements and at least 2 elements.

Operation

• If the size of the ciphertext is smaller than the size of the public key+1, compute

Scytl sVote

Protocol Specifications

138

1. 𝑠𝑘𝑛 = 𝑠𝑘𝑛 + 𝑠𝑘𝑛+1 + 𝑠𝑘𝑛+2 +⋯+ 𝑠𝑘𝑘 where the value of 𝑠𝑘𝑛 on the right is the old one

and the value on the left is the one used from this point onwards.

• For each i from 1 to n compute 𝑀𝑖 = (𝐶0)
−𝑠𝑘𝑖 · 𝐶𝑖 where the operations are done in the

mathematical group

Output

• The message (𝑀1, . . . , 𝑀𝑛).

9.1.14 Maurer’s Unified Proofs Prover

Based on Maurer’s framework for unifying zero-knowledge proofs of knowledge [9]

Input

• Mathematical Group

• Function PHI

1. Number of inputs r (number of exponents)

2. Number of outputs m

3. Array of base elements [ℎ1, ℎ2, … , ℎ𝑛].

4. Computation rules, which are specified by:

▪ for each i from 1 to m (i.e., each output), a list of pairs of indexes will be given,

where for each pair the first index will be in the range [1, … , 𝑛] and the second

index will be in the range [1, … , 𝑟].

• Input data

1. An array of m group elements (𝐶1, . . . , 𝐶𝑚).

2. An array of r exponents (𝑠1, . . . , 𝑠𝑟).

3. Auxiliary string data "𝐷𝑎𝑡𝑎"

• Hash function algorithm: SHA2-256/224 [10].

Operation

The operation is divided into three steps:

1. Commit step:

o pick as many random exponents 𝑎1, … , 𝑎𝑟 as the number of secrets received as input.

o Compute (𝐵1, … , 𝐵𝑚) = 𝑃𝐻𝐼(𝑎1, … , 𝑎𝑟). The PHI function computation is described at

the end of this section.

2. Challenge step: compute 𝑐 = 𝐻𝑎𝑠ℎ(𝐶1‖ 𝐶2‖ … ‖𝐶𝑚‖𝐵1‖…‖𝐵𝑚‖"𝐷𝑎𝑡𝑎").

Scytl sVote

Protocol Specifications

139

3. Answer step: for each exponent picked in the commit step, compute 𝑧𝑖 = 𝑎𝑖 + 𝑐 · 𝑠𝑖.

The proof which is sent is (𝑐; 𝑧1, … , 𝑧𝑟).

Phi function computation

On inputs (𝑠1, . . . , 𝑠𝑟) the function is computed as follows:

• The computation of the i-th output will be computed as:

o Given the list of pairs (𝑖1, 𝑗1), (𝑖2, 𝑗2), (𝑖3, 𝑗3), … (the computation rules)

o Take the base element with index 𝑖1 and exponentiate it to the input with index 𝑗1. This

gives a partial result 𝑝1 (a group element).

o Similarly, take base element with index 𝑖2 and exponentiate it to the input with index 𝑗2.

This gives a partial result 𝑝2 (a group element).

o Perform this operation with all pairs of indexes. Then, multiply all the partial results. The

result of the multiplication is the i-th output.

Output

• (𝑐; 𝑧1, … , 𝑧𝑟).

9.1.15 ElGamal Re-encryption

Input

• Encryption Parameters (which contains a mathematical group defined by p, q, g)

• Public Key = (𝑝𝑘1, … , 𝑝𝑘𝑘) (array of of any length k>0).

• Ciphertext (𝐶0, 𝐶1, 𝐶2, … , 𝐶𝑛)

Operation

• Generate a random exponent s between 1 and q-1 using the Random value generation

primitive.

• Generate the first element of the re-encrypted ciphertext by computing 𝐶′0 = 𝐶0 · 𝑔
𝑠 𝑚𝑜𝑑 𝑝.

• If 𝑛 − 1 < 𝑘, compute

o 𝑝𝑘𝑛 = 𝑝𝑘𝑛 · 𝑝𝑘𝑛+1 · 𝑝𝑘𝑛+2 · … · 𝑝𝑘𝑘 𝑚𝑜𝑑 𝑝 where the value of 𝑝𝑘𝑛 on the right is the old

one and the value on the left is the one used from this point onwards.

• For the elements (𝐶1, 𝐶2, … , 𝐶𝑛) in the ciphertext to be re-encrypted, compute: 𝐶′𝑖 = 𝐶𝑖 ·

𝑝𝑘𝑖
𝑠 𝑚𝑜𝑑 𝑝. The new value for 𝑝𝑘𝑛 should be used if this applies.

Output

• The generated random exponent s

Scytl sVote

Protocol Specifications

140

• The re-encrypted ciphertext (𝐶′0, 𝐶′1, 𝐶′2, … , 𝐶′𝑛)

9.1.16 ElGamal ciphertexts permutation

Input

• List of elements {𝐶𝑖}𝑖=1
𝑁

Operation

• Given the number of elements in the input list, call the Permutation generation. The output is

the permutation: �⃗� = {𝜋(1), … , 𝜋(𝑁)}

• Construct the output list in the following way: for each element in the permutation array 𝜋(𝑖):

o Take the element of the input list {𝐶𝑖}𝑖=1
𝑁 that is in the position indicated by 𝜋(𝑖).

o Set the element in the output list.

Output

• List of permuted elements {𝐶𝜋(𝑖)}𝑖=1
𝑁

• Permutation �⃗� = {𝜋(1), … , 𝜋(𝑁)}

9.1.17 Permutation generation

Input

• Number of elements to be permuted 𝑁

Operation

• Generate an array with as many elements as the number of elements received as input. The

value of each position is the position itself: 𝑎𝑟𝑟𝑎𝑦 = [0,1,2… ,𝑁 − 1]

• Permute the values of the array computed in the previous step:

o From 𝑖 = 𝑁 − 1 to 𝑖 = 0

▪ Select a random integer from 0 (inclusive) to 𝑖 (exclusive): 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑑𝑒𝑥

▪ Swap the values in positions 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑑𝑒𝑥 and 𝑖

Output

• Permutation �⃗� = {𝜋(1), … , 𝜋(𝑁)} = {𝜋(0), … , 𝜋(𝑁 − 1)} (notice that we use the same notation

that is used in the generation of the proof of s shuffle)

9.1.18 Symmetric key generation

Input

Scytl sVote

Protocol Specifications

141

• Key length: 128 bits.

• Provider SunJCE / Forge.

Operation

• Call the Random value generation primitive with input object type = “bytes” and length = key

length (depends on the symmetric encryption algorithm used)

Output

• Symmetric Key

9.1.19 Message Authentication Code generation

Input

• bytearray representing the message to be authenticated

• MAC symmetric key

• Algorithm parameters: HMAC SHA2-256 [10] [11]

• Provider SunJCE/Forge

Operation

• Generate the authentication data of the message using the MAC algorithm and provider

specified and the key provided.

Output

• Message MAC

9.1.20 Key Derivation Function: KDF1 specification

Defined in ISO-18033-2 and in PKCS#1v2.2 [5] with the name MGF1.

Input

• Bytearray to be derived

• Algorithm parameters: SHA2-256 [10]

• Provider BouncyCastle/Forge

• Output length b

Operation

• Given as input a bytearray x, a desired output length b in bits and a hash algorithm with output

length hLen, the primitive works as follows:

o Let T be the empty array

Scytl sVote

Protocol Specifications

142

o Define 𝑘 = 𝑐𝑒𝑖𝑙(𝑏 ℎ𝐿𝑒𝑛⁄)

o For i from 0 to k-1

▪ Convert i to a byte array of 4 bytes I

▪ Hash the concatenation of x and I

▪ Concatenate the hash to T

• Output the first b bits of T

Output

• The derived value

9.1.21 Password-based key derivation function

Input

• Password

• Salt

• Iterations: 32000

• Key length: 128 bits

• PBKDF2 with HMAC-SHA256

Operation

• Derive the symmetric key from the input password, using the input salt, PBKDF algorithm,

number of iterations and provider and PBKDF output length (given by the “key length”).

Output

• Symmetric Key

9.1.22 Hash generation

Input

• Data

• Algorithm parameters: SHA2-256 [10]

• Provider SUN/Forge

Operation

• Perform a hash of the data provided using the hash algorithm and provider specified in the

internal parameters.

Output

Scytl sVote

Protocol Specifications

143

• Hash on input data

9.1.23 Digital signature generation

Input

• Bytearray representing the message to sign

• Signing private key

• Algorithm parameters: signature algorithm RSA with PSS padding and SHA2-256 [10].

• Provider BouncyCastle / Forge / JJWT and Nimbus JOSE (for signatures in JSON).

Operation

• Sign the message using the signing private keys, and the signing algorithm and provider

specified.

Output

• Message signature

9.1.24 Symmetric encryption

Input

• Receives a byte array representing the message to encrypt

• Encryption Symmetric key

• Algorithm parameters: AES GCM [12] [13] with 128 bits’ key.

• Provider BouncyCastle / Forge.

Operation

• Generates a random IV using the Random value generation primitive with the following input:

BYTE type, IV length (given by the encryption algorithm).

• Encrypts the message using the symmetric key, the IV and the encryption algorithm and

provider specified.

Output

• Encrypted message concatenated with the IV

9.1.25 Symmetric decryption

Input

• Byte array representing the message to decrypt concatenated with the IV

• Encryption symmetric private key

• Algorithm parameters: AES GCM [12] [13] with 128 bits’ key.

Scytl sVote

Protocol Specifications

144

• Provider BouncyCastle/Forge

Operation

• Decrypt the message using the symmetric key, IV and the encryption algorithm and provider

specified.

Output

• Decrypted message /nOK

9.1.26 Group element generation

Input

• Mathematical group (𝑝, 𝑞, 𝑔)

Operation

• Generate a random exponent 𝑟 ∈ ℤ𝑞 between 1 and q-1 using the Random value generation

primitive.

• Exponentiate the generator 𝑔 to the random exponent: 𝐻 = 𝑔𝑟 𝑚𝑜𝑑 𝑝

Output

• The group element 𝐻

9.1.27 Commitment generation

Input

• Random exponent 𝑟

• List of elements to be committed: �⃗� = (𝑎1, … , 𝑎𝑛) ∈ ℤ𝑞
𝑛

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Operation

• Compute the exponentiation of 𝐻 to 𝑟: 𝐻𝑟

• For each 𝑎𝑖 where 𝑖 = 1,… , 𝑛 compute the exponentiation 𝐺𝑖
𝑎𝑖.

• Multiply all the exponentiations and obtain the commitment:

𝑐𝑜𝑚𝑐𝑘(�⃗�; 𝑟) = 𝑐𝑜𝑚𝑐𝑘(𝑎1, … , 𝑎𝑛; 𝑟) = 𝐻
𝑟∏𝐺𝑖

𝑎𝑖

𝑛

𝑖=1

Output

• The commitment: 𝑐𝑜𝑚𝑐𝑘(�⃗�; 𝑟)

Scytl sVote

Protocol Specifications

145

9.1.28 Multi-exponentiation argument

Input

• 𝐶1, … , 𝐶𝑚

• 𝐶

• 𝑐𝐴

• 𝐴 = (�⃗�1, … , �⃗�𝑚)

• 𝑟 ∈ ℤ𝑞
𝑚

• 𝜌 ∈ ℤ𝑞

• 𝑝, 𝑞, 𝑔 (the encryption parameters)

• 𝑝𝑘 (public key used to encrypt the votes)

Operation

1. Generate 𝑛 random elements between 1 and q-1 (generate it using the Random value

generation primitive) and construct the vector �⃗�0.

2. Generate the following random elements between 1 and q-1 (generate it using the Random

value generation primitive): 𝑟0 ← ℤ𝑞 and 𝑏0, 𝑠0, 𝜏0, … , 𝑏2𝑚−1, 𝑠2𝑚−1, 𝜏2𝑚−1 ← ℤ𝑞

3. Set 𝑏𝑚 = 0, 𝑠𝑚 = 0, 𝜏𝑚 = 𝜌

4. Commit to the vector �⃗�0 using the Commitment generation primitive with the following inputs:

• The exponent 𝑟0

• List of elements to be committed: �⃗�0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐴0 = 𝑐𝑜𝑚𝑐𝑘(�⃗�0; 𝑟0)

5. Commit to each element 𝑏𝑘 (𝑘 = 0,… ,2𝑚 − 1) using the Commitment generation primitive with

the following inputs:

• The exponent 𝑠𝑘

• List of elements to be committed: 𝑏𝑘 (the list contains only one element)

• Commitment key 𝑐𝑘 = (𝐺1, 𝐻)

The result is the commitment 𝑐𝐵𝑘 = 𝑐𝑜𝑚𝑐𝑘(𝑏𝑘; 𝑠𝑘).

After computing all the commitments, we will obtain the set of 2𝑚 commitments: {𝑐𝐵𝑘}𝑘=0
2𝑚−1

Scytl sVote

Protocol Specifications

146

6. For each pair of elements (𝑏𝑘, 𝜏𝑘) for 𝑘 = 0,… ,2𝑚 − 1, call the ElGamal encryption primitive with

the following inputs:

• (𝑝, 𝑞, 𝑔)

• 𝑝𝑘

• 𝑔𝑏𝑘

• 𝜏𝑘

The result is the encryption of 𝑔𝑏𝑘 using 𝜏𝑘 as the randomness for encrypting: ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)

After computing all the encryptions, we will obtain 2𝑚 encryption: {ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)}𝑘=0

2𝑚−1

7. Given �⃗�1, … , �⃗�𝑚 and 𝐶1, … , 𝐶𝑚 compute, for each 𝑘 = 0,… ,2𝑚 − 1, the following products:

∏ 𝐶
𝑖

�⃗⃗�𝑗

𝑚,𝑚

𝑖=0,𝑗=0

𝑗=(𝑘−𝑚)+1

The exponentiation of a vector to another vector is defined as:

𝑐 �⃗⃗� =∏𝑐
𝑗

𝑎𝑗

𝑛

𝑗=1

8. Given the values generated in steps 6 and 7, compute the following 2𝑚 values:

𝐸0 = ℰ𝑝𝑘(𝑔
𝑏0; 𝜏0) ∏ 𝐶

𝑖

�⃗⃗�𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=1−𝑚

𝐸1 = ℰ𝑝𝑘(𝑔
𝑏1; 𝜏1) ∏ 𝐶

𝑖

�⃗⃗�𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=2−𝑚

⋮

𝐸2𝑚−1 = ℰ𝑝𝑘(𝑔
𝑏2𝑚−1; 𝜏2𝑚−1) ∏ 𝐶

𝑖

�⃗⃗�𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=𝑚

The result is the set 𝐸𝑘 = ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)∏ 𝐶

𝑖

�⃗⃗�𝑗𝑚,𝑚
𝑖=0,𝑗=0

𝑗=(𝑘−𝑚)+1

 for 𝑘 = 0,… ,2𝑚 − 1.

9. Concatenate the values of 𝐶, 𝐶′, 𝑐𝐴, 𝑐𝐴0, {𝑐𝐵𝑘}𝑘=0
2𝑚−1

 and {𝐸𝑘}𝑘=0
2𝑚−1 in the following way:

• For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

• For each element in 𝐶′ convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

Scytl sVote

Protocol Specifications

147

• Convert 𝑐𝐴0 to a string.

• For each element in {𝑐𝐵𝑘}𝑘=0
2𝑚−1

 convert it to a string and concatenate all of them in a

single value.

• For each element in {𝐸𝑘}𝑘=0
2𝑚−1 convert it to a string and concatenate all of them in a

single value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ (𝐶|𝐶′|𝑐𝐴|𝑐𝐴0|{𝑐𝐵𝑘}𝑘=0
2𝑚−1

|{𝐸𝑘}𝑘=0
2𝑚−1).

10. Compute the following vector �⃗� = (𝑥, 𝑥2, … , 𝑥𝑚)

11. Arrange the vectors (�⃗�1, … , �⃗�𝑚) in a matrix 𝐴 having 𝑛 rows and 𝑚 columns:

𝐴 = (�⃗�1 ⋯ �⃗�𝑚) = (

𝑎1 ⋯ 𝑎(𝑚−1)·𝑛+1
⋮ ⋱ ⋮
𝑎𝑛 ⋯ 𝑎𝑁

)

12. Given �⃗�0, 𝐴 and �⃗� compute �⃗� = �⃗�0 + 𝐴�⃗�, where the product of a matrix by a vector is done in

the standard way.

13. Given 𝑟 , �⃗� and 𝑟0 compute 𝑟 = 𝑟0 + 𝑟 · �⃗� , where 𝑟 · �⃗� is the standard inner product 𝑟 · �⃗� =

∑ 𝑟𝑖𝑥𝑖
𝑚
𝑖=1 .

14. Given 𝑏0, {𝑏𝑘}𝑘=0
2𝑚−1 and �⃗�, compute 𝑏 = 𝑏0 +∑ 𝑏𝑘𝑥

𝑘2𝑚−1
𝑘=1 .

15. Given 𝑠0, {𝑠𝑘}𝑘=0
2𝑚−1 and �⃗�, compute 𝑠 = 𝑠0 +∑ 𝑠𝑘𝑥

𝑘.2𝑚−1
𝑘=1

16. Given 𝜏0, {𝜏𝑘}𝑘=0
2𝑚−1 and �⃗�, compute 𝜏 = 𝜏0 + ∑ 𝜏𝑘𝑥

𝑘2𝑚−1
𝑘=1 .

Output

• Output �⃗�, 𝑟, 𝑏, 𝑠, 𝜏

Verification

Check that:

• 𝑐𝐴0 , 𝑐𝐵0 , … , 𝑐𝐵2𝑚−1 ∈ 𝔾

• 𝐸0, … , 𝐸2𝑚−1 ∈ ℍ

• �⃗� ∈ ℤ𝑞
𝑛 and 𝑟, 𝑏, 𝑠, 𝜏 ∈ ℤ𝑞

Accept if:

𝑐𝐵𝑚 = 𝑐𝑜𝑚𝑐𝑘(0; 0) and 𝐸𝑚 = 𝐶

𝑐𝐴0𝑐𝐴
�⃗� = 𝑐𝑜𝑚𝑐𝑘(�⃗�; 𝑟)

Scytl sVote

Protocol Specifications

148

𝑐𝐵0 ∏ 𝑐𝐵𝐾
𝑥𝑘 = 𝑐𝑜𝑚𝑐𝑘(𝑏; 𝑠)

2𝑚−1

𝑘=1

𝐸0 ∏ 𝐸𝑘
𝑥𝑘 =

2𝑚−1

𝑘=1

ℰ𝑝𝑘(𝐺
𝑏; 𝜏)∏𝐶𝑖

𝑥𝑚−𝑖�⃗⃗�

𝑚

𝑖=1

9.1.29 Product argument

With this argument we can demonstrate that a set of committed elements have a particular product

Input

• 𝑐𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟) = (𝑐𝐴1 , 𝑐𝐴2 , … , 𝑐𝐴𝑚) (notice that in case 𝑚 = 1 and according to what is

explained in step 19 this vector will contain 2 elements instead of 1)

• 𝐴 = (�⃗�1, … , �⃗�𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19 this

vector will contain 2 elements instead of 1)

• 𝑟 = (𝑟1, … , 𝑟𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19 this

vector will contain 2 elements instead of 1)

• 𝑏 = ∏ ∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

• Commitment public key 𝑐𝑘

Operation

1. Given the matrix 𝐴

𝐴 = (
�⃗�1
⋮
�⃗�𝑚

) = (

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛
)

Compute the product of the elements of each column:

∏𝑎𝑖1

𝑚

𝑖=1

,∏𝑎𝑖2

𝑚

𝑖=1

, … ,∏𝑎𝑖𝑛

𝑚

𝑖=1

and define the vector �⃗⃗� = (∏ 𝑎𝑖1
𝑚
𝑖=1 , ∏ 𝑎𝑖2

𝑚
𝑖=1 , … ,∏ 𝑎𝑖𝑛

𝑚
𝑖=1).

2. Commit to �⃗⃗� using the Commitment generation primitive with the following inputs:

• A random exponent 𝑠 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed: �⃗⃗�

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑏 = 𝑐𝑜𝑚𝑐𝑘(∏ 𝑎1𝑗 , …
𝑚
𝑗=1 , ∏ 𝑎𝑛𝑗

𝑚
𝑗=1 ; 𝑠)

Scytl sVote

Protocol Specifications

149

3. Engage in a Hadamard product argument given as input 𝑐𝐴, 𝑐𝑏, �⃗⃗�, �⃗�1, … , �⃗�𝑚, 𝑟, 𝑠 (the name of the

variables is the same here as in the Hadamard product argument)

4. Engage in a Single value product argument given as input:

• 𝑏𝑆𝑉𝑃𝐴𝑟𝑔 = 𝑏

• �⃗�𝑆𝑉𝑃𝐴𝑟𝑔 = �⃗⃗�

• 𝑐𝑎
𝑆𝑉𝑃𝐴𝑟𝑔

= 𝑐𝑏

Verification

Accept if 𝑐𝑏 ∈ 𝔾 and both the Hadamard product argument and the Single value argument are

convincing.

9.1.30 Hadamard product argument

Input

• 𝑐𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟) = (𝑐𝐴1 , 𝑐𝐴2 , … , 𝑐𝐴𝑚) (notice that in case 𝑚 = 1 and according to what is

explained in step 19 this vector will contain 2 elements instead of 1.

• 𝑐𝑏 = 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�; 𝑠)

• �⃗⃗�

• �⃗�1, … , �⃗�𝑚 (notice that in case 𝑚 = 1 and according to what is explained in step 19 this

vector will contain 2 elements instead of 1)

• 𝑟 = (𝑟1, … , 𝑟𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19 this

vector will contain 2 elements instead of 1)

• 𝑠

• Commitment public key ck

Operation

1. If 𝑚 > 1:

• Given the matrix 𝐴

𝐴 = (
�⃗�1
⋮
�⃗�𝑚

) = (

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛
)

Compute the vectors �⃗⃗�1, … , �⃗⃗�𝑚 in the following way:

Scytl sVote

Protocol Specifications

150

�⃗⃗�1 = �⃗�1 = (𝑎11, 𝑎21, … , 𝑎𝑛1)

�⃗⃗�2 = �⃗�1�⃗�2 = (∏𝑎1𝑗

2

𝑗=1

,∏𝑎2𝑗

2

𝑗=1

, … ,∏𝑎𝑛𝑗

2

𝑗=1

)

⋮

�⃗⃗�𝑚−1 = �⃗�1 ··· �⃗�𝑚−1 = (∏𝑎1𝑗

𝑚−1

𝑗=1

,∏𝑎2𝑗

𝑚−1

𝑗=1

, … ,∏𝑎𝑛𝑗

𝑚−1

𝑗=1

)

�⃗⃗�𝑚 = �⃗�1 ··· �⃗�𝑚 = (∏𝑎1𝑗

𝑚

𝑗=1

,∏𝑎2𝑗

𝑚

𝑗=1

, … ,∏𝑎𝑛𝑗

𝑚

𝑗=1

) = �⃗⃗�

That is, each vector is computed as �⃗⃗�𝑖 = ∏ �⃗�𝑧
𝑖
𝑧=1 where the multiplication of two vectors

is the entry-wise product (given �⃗� and �⃗� of 𝑛 element, the product �⃗��⃗� is defined as �⃗��⃗� =

(𝑥1𝑦1, … , 𝑥𝑛𝑦𝑛)). Define the matrix 𝐵 as:

𝐵 = (
�⃗⃗�1
⋮

�⃗⃗�𝑚

)

• Commit to the vectors �⃗⃗�2, … , �⃗⃗�𝑚−1 (notice that for �⃗⃗�1 and �⃗⃗�𝑚 we already have a

commitment) using the Commitment generation primitive with the following inputs:

o A random exponent 𝑠𝑖 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random

value generation primitive)

o List of elements to be committed: �⃗⃗�2

o Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

After committing to all the vectors, we will obtain the following commitments:

𝑐𝐵2 = 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�2; 𝑠2)

⋮

𝑐𝐵𝑚−1 = 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�𝑚−1; 𝑠𝑚−1)

• Define the vector s⃗ as

𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑚−1, 𝑠𝑚) = (𝑟1, 𝑠2, … , 𝑠𝑚−1, 𝑠)

Notice that the last value of the vector (𝑠) is the randomness used in the commitment

𝑐𝑏 and the first value of the vector (𝑟1) is the first randomness of vector 𝑟 used in the

commitment 𝑐𝐴.

• Define the commitment to the matrix 𝐵 as:

𝑐𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠) = (𝑐𝑜𝑚𝑐𝑘(�⃗⃗�1; 𝑠1), 𝑐𝐵2 , … , 𝑐𝐵𝑚−1 , 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�𝑚; 𝑠𝑚))

where, 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�1; 𝑠1) = 𝑐𝑜𝑚𝑐𝑘(�⃗�1; 𝑟1) and 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�𝑚; 𝑠𝑚) = 𝑐𝑏.

2. If 𝑚 = 1:

Scytl sVote

Protocol Specifications

151

• Define �⃗⃗�1 = �⃗�1

• Define �⃗⃗�2 = �⃗�1�⃗�2

• The commitment to �⃗⃗�1 is directly the commitment to �⃗�1: 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�1; 𝑠1) = 𝑐𝑜𝑚𝑐𝑘(�⃗�1; 𝑟1)

• The commitment to �⃗⃗�2 is directly the commitment 𝑐𝑏: 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�2; 𝑠𝑚) = 𝑐𝑏

• Define the vector s⃗ as 𝑠 = (𝑠1, 𝑠2) = (𝑟1, 𝑠), where 𝑟1 is the first randomness of vector 𝑟

used in the commitment 𝑐𝐴 and 𝑠 is the randomness used in the commitment 𝑐𝑏.

• Define the commitment to the matrix 𝐵 as:

𝑐𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠) = (𝑐𝑜𝑚𝑐𝑘(�⃗⃗�1; 𝑠1), (�⃗⃗�2; 𝑠2)) = (𝑐𝑜𝑚𝑐𝑘(�⃗�1; 𝑟1), 𝑐𝑏)

3. Concatenate the values of 𝑐𝐴, 𝑐𝑏 and 𝑐𝐵 in the following way:

• For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝑏 to a string.

• For each element in 𝑐𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐𝐴|𝑐𝑏|𝑐𝐵)

4. Concatenate the values of 𝑐𝐴, 𝑐𝑏 ,𝑐𝐵 and the number 1 in the following way:

• For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝑏 to a string.

• For each element in 𝑐𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the number

1 and compute a hash of the concatenation. Call the result 𝑦 = 𝐻𝑎𝑠ℎ(𝑐𝐴|𝑐𝑏|𝑐𝐵|1).

5. If 𝑚 > 1:

• Given the vectors �⃗⃗�1, … , �⃗⃗�𝑚−1, �⃗⃗�𝑚 and the hash 𝑥, compute the following values:

𝑑1 = 𝑥
1�⃗⃗�1 𝑚𝑜𝑑 𝑞
⋮

𝑑𝑚−1 = 𝑥
𝑚−1�⃗⃗�𝑚−1 𝑚𝑜𝑑 𝑞

𝑑 = ∑ 𝑥𝑖 �⃗⃗�𝑖+1

𝑚−1

𝑖=1

 𝑚𝑜𝑑 𝑞

Scytl sVote

Protocol Specifications

152

• Given the vector s⃗ and the hash 𝑥, compute the following values:

𝑡1 = 𝑥
1𝑠1 𝑚𝑜𝑑 𝑞
⋮

𝑡𝑚−1 = 𝑥
𝑚−1𝑠𝑚−1 𝑚𝑜𝑑 𝑞

𝑡 = ∑ 𝑥𝑖𝑠𝑖+1

𝑚−1

𝑖=1

 𝑚𝑜𝑑 𝑞

6. If 𝑚 = 1:

• Given the vectors �⃗⃗�1, �⃗⃗�2 and the hash 𝑥, compute the following values:

𝑑1 = 𝑥
1�⃗⃗�1 𝑚𝑜𝑑 𝑞

𝑑 = 𝑥1�⃗⃗�2 𝑚𝑜𝑑 𝑞

• Given the vector s⃗ and the hash 𝑥, compute the following values:

𝑡1 = 𝑥
1𝑠1 𝑚𝑜𝑑 𝑞

𝑡 = 𝑥1𝑠2 𝑚𝑜𝑑 𝑞

7. Commit to each vector 𝑑𝑖 using the Commitment generation primitive with the following inputs:

• The corresponding 𝑡𝑖

• List of elements to be committed: 𝑑𝑖

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐷𝑖 = 𝑐𝑜𝑚𝑐𝑘(𝑑𝑖; 𝑡𝑖).

After computing all the commitments, we will obtain 𝑐𝐷1 … , 𝑐𝐷𝑚−1 in case 𝑚 > 1 and 𝑐𝐷1 in case

𝑚 = 1.

8. Commit to the vector 𝑑 using the Commitment generation primitive with the following inputs:

• The corresponding 𝑡

• List of elements to be committed: 𝑑

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐷 = 𝑐𝑜𝑚𝑐𝑘(𝑑; 𝑡).

9. Commit to the vector of 𝑛 elements filled with the value −1 using the Commitment generation

primitive with the following inputs:

• The corresponding (−1,… ,−1)

• List of elements to be committed: 0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐−1 = 𝑐𝑜𝑚𝑐𝑘(−1⃗⃗; 0).

Scytl sVote

Protocol Specifications

153

10. Engage in a Zero argument given as input:

• 𝑐𝐴
0𝐴𝑟𝑔

= (𝑐𝐴1
0𝐴𝑟𝑔

, 𝑐𝐴2
0𝐴𝑟𝑔

, . . . , 𝑐𝐴𝑚
0𝐴𝑟𝑔

) = (𝑐−1, 𝑐𝐴2 , … , 𝑐𝐴𝑚) (if 𝑚 = 1 this vector has only two

elements (𝑐−1, 𝑐𝐴2)).

• 𝑐𝐵
0𝐴𝑟𝑔

= (𝑐𝐵0
0𝐴𝑟𝑔

, 𝑐𝐵1
0𝐴𝑟𝑔

, . . . , 𝑐𝐵𝑚−1
0𝐴𝑟𝑔

) = (𝑐𝐷, 𝑐𝐷1 … , 𝑐𝐷𝑚−1) (if 𝑚 = 1 this vector has only two

elements (𝑐𝐷, 𝑐𝐷1)).

• 𝐴0𝐴𝑟𝑔 = (�⃗�1
0𝐴𝑟𝑔

, �⃗�2
0𝐴𝑟𝑔

, … , �⃗�𝑚
0𝐴𝑟𝑔

) = (−1⃗⃗, �⃗�2, … , �⃗�𝑚) and

𝑟0𝐴𝑟𝑔 = (𝑟1
0𝐴𝑟𝑔

, … , 𝑟𝑚
0𝐴𝑟𝑔

) = (0, 𝑟2, … , 𝑟𝑚) (if 𝑚 = 1 these vectors have only two elements

(−1⃗⃗, �⃗�2),(0, 𝑟2))

• 𝐵0𝐴𝑟𝑔 = (�⃗⃗�0
0𝐴𝑟𝑔

, �⃗⃗�1
0𝐴𝑟𝑔

, … , �⃗⃗�𝑚−1
0𝐴𝑟𝑔

) = (𝑑, 𝑑1, … , 𝑑𝑚−1) and

𝑠0𝐴𝑟𝑔 = (𝑠0
0𝐴𝑟𝑔

, … , 𝑠𝑚−1
0𝐴𝑟𝑔

) = (𝑡, 𝑡1, 𝑡2, … , 𝑡𝑚−1) (if 𝑚 = 1 these vectors have only two

elements (𝑑, 𝑑1),(𝑡, 𝑡1))

Verification

Check that:

• 𝑐𝐵2 , … , 𝑐𝐵𝑚−1 ∈ 𝔾

• 𝑐𝐵1 = 𝑐𝐴1

• 𝑐𝐵𝑚 = 𝑐𝑏

and define:

𝑐𝐷𝑖 = 𝑐𝐵𝑖
𝑥𝑖 𝑐𝐷 =∏𝑐𝐵𝑖+1

𝑥𝑖
𝑚−1

𝑖=1

𝑐−1 = 𝑐𝑜𝑚𝑐𝑘(−1⃗⃗; 0)

Accept if the zero argument is valid.

9.1.31 Zero argument

Input

• 𝑐𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟)

• 𝑐𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠)

• (�⃗�1, … , �⃗�𝑚) (the rows of matrix 𝐴. Notice that in case 𝑚 = 1 this vector contains 2 elements

according to that explained in step 19).

• 𝑟 = (𝑟1, … , 𝑟𝑚) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19)

Scytl sVote

Protocol Specifications

154

• (�⃗⃗�0, … , �⃗⃗�𝑚−1) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19)

• 𝑠 = (𝑠0, … , 𝑠𝑚−1) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19)

Operation

1. If 𝑚 = 1 set 𝑚 = 2 (this change only applies to this argument).

2. Generate 𝑛 random elements between 1 and q-1 (generate it using the Random value

generation primitive) and construct the vector �⃗�0.

3. Commit to the vector �⃗�0 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑟0 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed: �⃗�0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐴0 = 𝑐𝑜𝑚𝑐𝑘(�⃗�0; 𝑟0).

4. Generate 𝑛 random elements between 1 and q-1 (generate it using the Random value

generation primitive) and construct the vector �⃗⃗�𝑚.

5. Commit to the vector �⃗⃗�𝑚 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑠𝑚 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed: �⃗⃗�𝑚

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐵𝑚 = 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�𝑚; 𝑠𝑚).

6. Define a new operation (we will denote it as ∗) that given two vectors, (𝑎1, … , 𝑎𝑛) and (𝑑1, … , 𝑑𝑛),

does the following:

 (𝑎1, … , 𝑎𝑛) ∗ (𝑑1, … , 𝑑𝑛) =∑𝑎𝑗𝑑𝑗𝑦
𝑗

𝑛

𝑗=1

where 𝑦 is the hash computed in step 4 of the Hadamard product argument.

7. Compute the values 𝑑𝑘 = ∑ �⃗�𝑖 ∗ �⃗⃗�𝑗0≤𝑖,𝑗≤𝑚

𝑗=(𝑚−𝑘)+𝑖

 with 𝑘 = 0,… ,2𝑚:

𝑑0 = �⃗�0 ∗ �⃗⃗�𝑚

Scytl sVote

Protocol Specifications

155

𝑑1 = �⃗�0 ∗ �⃗⃗�𝑚−1 + �⃗�1 ∗ �⃗⃗�𝑚

𝑑2 = �⃗�0 ∗ �⃗⃗�𝑚−2 + �⃗�1 ∗ �⃗⃗�𝑚−1 + �⃗�2 ∗ �⃗⃗�𝑚

⋮

𝑑𝑚 =∑�⃗�𝑖 ∗ �⃗⃗�𝑖

𝑚

𝑖=0

𝑑𝑚+1 =∑�⃗�𝑖 ∗ �⃗⃗�𝑖−1

𝑚

𝑖=1

⋮

𝑑2𝑚 = �⃗�𝑚 ∗ �⃗⃗�0

 Define the vector 𝑑 = (𝑑0, … , 𝑑2𝑚).

8. Generate 2𝑚 + 1 random elements between 1 and q-1 (generate it using the Random value

generation primitive) and construct the vector 𝑡 = (𝑡0, … 𝑡2𝑚). Set the element 𝑡𝑚+1 of the vector

to 0

9. Commit to each element of the vector 𝑑 using the Commitment generation primitive with the

following inputs:

• The corresponding randomness 𝑡𝑖

• List of elements to be committed: 𝑑𝑖 (list with one element)

• Commitment key 𝑐𝑘 = (𝐺1, 𝐻)

The result is the commitment 𝑐𝐷𝑖 = 𝑐𝑜𝑚𝑐𝑘(𝑑𝑖; 𝑡𝑖).

10. After computing all the commitment define 𝑐𝐷 as 𝑐𝐷 = 𝑐𝑜𝑚𝑐𝑘(𝑑; 𝑡) = (𝑐𝐷0 , … . , 𝑐𝐷2𝑚).

11. Concatenate the values of 𝑐𝐴, 𝑐𝐵 ,𝑐𝐴0, 𝑐𝐵𝑚 and 𝑐𝐷 in the following way:

• For each element in 𝑐𝐴 convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐𝐵 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝐴0 to a string.

• Convert 𝑐𝐵𝑚 to a string.

• For each element in 𝑐𝐷 convert it to a string and concatenate all of them in a single

value.

Scytl sVote

Protocol Specifications

156

Concatenate in a single value all the results obtained from all the steps above and compute a

hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐𝐴|𝑐𝐵|𝑐𝐴0|𝑐𝐵𝑚|𝑐𝐷).

12. Given the set of vectors (�⃗�0, �⃗�1, … , �⃗�𝑚) and the hash 𝑥 compute the vector �⃗� in the following

way:

�⃗� = ∑𝑥𝑖�⃗�𝑖

𝑚

𝑖=0

13. Given the set of values (𝑟0, 𝑟1, … , 𝑟𝑚) and the hash 𝑥 compute the value 𝑟 in the following way:

𝑟 =∑𝑥𝑖𝑟𝑖

𝑚

𝑖=0

14. Given the set of vectors (�⃗⃗�0, �⃗⃗�1, … , �⃗⃗�𝑚) and the hash 𝑥 compute the vector �⃗⃗� in the following

way:

�⃗⃗� = ∑𝑥𝑚−𝑗 �⃗⃗�𝑗

𝑚

𝑗=0

15. Given the set of values (𝑠0, 𝑠1, … , 𝑠𝑚) and the hash 𝑥 compute the value 𝑠 in the following way:

𝑠 =∑𝑥𝑚−𝑗𝑠𝑗

𝑚

𝑗=0

16. Given the set of values (𝑡0, 𝑠1, … , 𝑡2𝑚) and the hash 𝑥 compute the value 𝑡 in the following way:

𝑡 = ∑𝑥𝑘𝑡𝑘

2𝑚

𝑘=0

Output

• Output �⃗�, 𝑟, �⃗⃗�, 𝑠, 𝑡

Verification

Accept if:

• 𝑐𝐴0 , 𝑐𝐵𝑚 ∈ 𝔾

• 𝑐𝐷 ∈ 𝔾
2𝑚+1

• 𝑐𝐷𝑚+1 = 𝑐𝑜𝑚𝑐𝑘(0; 0)

• �⃗�, �⃗⃗� ∈ ℤ𝑞
𝑛

• 𝑟, 𝑠, 𝑡 ∈ ℤ𝑞

• and the following equations hold:

Scytl sVote

Protocol Specifications

157

∏𝑐𝐴𝑖
𝑥𝑖

𝑚

𝑖=0

= 𝑐𝑜𝑚𝑐𝑘(�⃗�; 𝑟) ∏𝑐𝐵𝑗
𝑥𝑚−𝑗

𝑚

𝑗=0

= 𝑐𝑜𝑚𝑐𝑘(�⃗⃗�; 𝑠) ∏𝑐𝐷𝑘
𝑥𝑘

2𝑚

𝑘=0

= 𝑐𝑜𝑚𝑐𝑘(�⃗� ∗ �⃗⃗�; 𝑡)

9.1.32 Single value product argument

Input

• 𝑏

• �⃗� = (𝑎1, … , 𝑎𝑛)

• 𝑐𝑎 = 𝑐𝑜𝑚𝑐𝑘(�⃗�; 𝑟)

• 𝑟 ∈ ℤ𝑞

Operation

1. Given �⃗�, compute the following values:

𝑏1 = 𝑎1 𝑏2 = 𝑎1𝑎2 ⋯ 𝑏𝑛 =∏𝑎𝑖

𝑛

𝑖=1

2. Generate 𝑛 random exponents 𝑑1, … 𝑑𝑛 ← ℤ𝑞 between 1 and q-1 using the Random value

generation primitive and define the vector 𝑑 = (𝑑1, … , 𝑑𝑛).

3. Commit to the vector 𝑑 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑟𝑑 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed: �⃗⃗�2

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝑑 = 𝑐𝑜𝑚𝑐𝑘(𝑑; 𝑟𝑑)

4. Define two values 𝛿1 and 𝛿𝑛 as 𝛿1 = 𝑑1, 𝛿𝑛 = 0

5. Generate the random exponents 𝛿2, … , 𝛿𝑛−1 ← ℤ𝑞 between 1 and q-1 using the Random value

generation primitive.

6. From 𝑑2, … 𝑑𝑛 and 𝛿1, 𝛿2, … , 𝛿𝑛−1 compute the following values for 𝑖 = 1,… , 𝑛 − 1:

−𝛿1𝑑2
−𝛿2𝑑3
⋮

𝛿𝑖𝑑𝑖+1
⋮

−𝛿𝑛−1𝑑𝑛

7. Commit to the elements generated in the previous steps using the Commitment generation

primitive with the following inputs:

Scytl sVote

Protocol Specifications

158

• A random exponent 𝑠1 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed (−𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2, … , −𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛)

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛−1, 𝐻)

The result is the commitment 𝑐𝛿 = 𝑐𝑜𝑚𝑐𝑘(−𝛿1𝑑2, … ,−𝛿𝑛−1𝑑𝑛; 𝑠1)

8. From 𝛿1, 𝛿2, … , 𝛿𝑛, 𝑑2, … 𝑑𝑛 and 𝑎2, … 𝑎𝑛 compute the following values for 𝑖 = 1,… , 𝑛 − 1:

−𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2
−𝛿3 − 𝑎3𝛿2 − 𝑏2𝑑3

⋮
−𝛿𝑖+1 − 𝑎𝑖+1𝛿𝑖 − 𝑏𝑖𝑑𝑖+1

⋮
−𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛

9. Commit to the elements generated in the previous steps using the Commitment generation

primitive with the following inputs:

• A random exponent 𝑠𝑥 ∈ ℤ𝑞 between 1 and q-1 (generate it using the Random value

generation primitive)

• List of elements to be committed:(−𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2, … , −𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛)

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛−1, 𝐻)

The result is the commitment 𝑐∆ = 𝑐𝑜𝑚𝑐𝑘(𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2, … , 𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛; 𝑠𝑥)

10. Convert the values of 𝑐𝑎, 𝑏 ,𝑐𝑑, 𝑐𝛿 and 𝑐∆ to a string and concatenate all of them in a single

value. Compute a hash of the concatenation and call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐𝑎|𝑏|𝑐𝑑|𝑐𝛿|𝑐∆).

11. Given �⃗�, 𝑑, 𝑟, 𝑟𝑑 and 𝑥, compute the following values:

�̃�1 = 𝑥𝑎1 + 𝑑1
⋮

�̃�𝑛 = 𝑥𝑎𝑛 + 𝑑𝑛
�̃� = 𝑥𝑟 + 𝑟𝑑

12. Given �⃗⃗�, 𝛿1, … , 𝛿𝑛, 𝑠1, 𝑠𝑥 and 𝑥, compute the following values:

�̃�1 = 𝑥𝑏1 + 𝛿1
⋮

�̃�𝑛 = 𝑥𝑏𝑛 + 𝛿𝑛
�̃� = 𝑥𝑠𝑥 + 𝑠1

Output

• Output (�̃�1, … , �̃�𝑛), (�̃�1, … , �̃�𝑛), �̃�, �̃� .

Verification

Accept if:

Scytl sVote

Protocol Specifications

159

• 𝑐𝑑 , 𝑐𝛿 , 𝑐∆ ∈ 𝔾

• �̃�1, �̃�1, … , �̃�𝑛, �̃�𝑛, �̃�, �̃� ∈ ℤ𝑞

• and the following equations hold:

𝑐𝑎
𝑥𝑐𝑑 = 𝑐𝑜𝑚𝑐𝑘(�̃�1, … , �̃�𝑛; �̃�) 𝑐∆

𝑥𝑐𝛿 = 𝑐𝑜𝑚𝑐𝑘 (𝑥�̃�2 − �̃�1�̃�2, … , 𝑥�̃�𝑛 − �̃�𝑛−1�̃�𝑛; �̃�)

�̃�1 = �̃�1 �̃�𝑛 = 𝑥𝑏

9.2 Optimizations at the voting client context in the voting phase

Several optimizations can be done to reduce the time needed to cast a vote. They are focused on

reducing the number of modular exponentiations to be computed once the voter is ready to send his/her

vote. The modular exponentiations take much more time than any other operation executed by the

voting client, and therefore is where the optimization efforts are focused.

Three strategies can be followed:

• Pre-computation at the voting client: Some modular exponentiations can be computed while

the voter is navigating through the application, and before the voter clicks on the “send” button.

• Pre-computation at configuration: Some modular exponentiations are already being

computed during the configuration. Their results can be stored in the password-sealed KeyStore

sent to the voter at the voting phase, so that they can be recovered, and used to construct the

vote to be sent.

• Use of short exponents: For some operations, exponents may be shorter than what is required

by the mathematical group where the operations are done, without posing a security risk. In [14]

it is demonstrated that full exponents and short exponents are indistinguishable under the

Discrete Logarithm with Short Exponent (DLSE) assumption, and that there is no efficient

algorithm which solves the DLSE problem with non-negligible probability. Currently this

optimization is not used.

9.2.1 Pre-computation at the Voting Client

Pre-computation operations may be done at the voting client by using “multithreading” features given

by web workers. Another alternative is that they are computed between page changes, etc.

There are two kinds of values that can be pre-computed at the voting client: ones which do not depend

on the voter opening her KeyStore (that is, entering the Start Voting Key (𝑆𝑉𝐾𝑖𝑑)), and ones which do

depend on that. Here we provide a specification of how to do pre-computations of both values:

Preconditions for pre-computations:

• Execute the entropy collector when the first page loads, set to an entropy value of 256 bits.

When it stops, the application is ready to start generating random values. Precomputations must

Scytl sVote

Protocol Specifications

160

not start before that. If the voter clicks on “send” and the entropy collector has not already

stopped (there is no initialized “prng”), stop it and proceed to do the computations.

• Retrieve the encryption parameters, the Election public key (𝐸𝐿𝑝𝑘) and the Choice Return

Codes encryption public key after the voter has been authenticated (after the voter receives the

authentication token, together with the election and ballot-related information.

• Open the voter Verification Card KeyStore and retrieve the Verification Card Secret Key.

Pre-computations:

1. Voting options encryption

a. Use short exponent for encryption.

b. Precompute encryption values with election public key.

2. Partial Choice Return Codes encryption.

a. Use short exponent for encryption.

b. Precompute encryption values with partial Choice Return Codes encryption public key.

3. Cryptographic proofs generation.

a. Schnorr proof: can be fully computed after step 1 is ready (only C0, the first part of the

precomputed values for the vote encryption, is needed). Short exponents can be used.

b. Exponentiation proof generator: use the pre-compute method to pre-compute part of

the exponentiations.

c. Plaintext equality proof generator: use the pre-compute method to pre-compute part of

the exponentiations.

d. Exponentiated ciphertext pre-computation: raise the pre-computed encryption values

from step 1 to the verification card private key (𝑘𝑖𝑑).

Operations that can be done after a voter selection:

4. Partial Choice Return Codes computation: raise the selected voting option to the verification

card private key (𝑘𝑖𝑑).

Using the pre-computed values after voter finishes selections:

5. Voting options encryption: multiply together all the selected voting options and multiply the result

by the second part (the phi) of the pre-computed values in step 1.

6. Partial Choice Return Codes encryption.

a. Multiply each partial Choice Return Code computed in step 4 to one of the phi

components of the pre-computed encryption values in step 2.

7. Cryptographic proofs generation.

Scytl sVote

Protocol Specifications

161

a. Exponentiation proof generator: use the generate method from the proof, using the

values pre-computed in step 3.

b. Plaintext equality proof generator: use the generate method from the proof, using the

values pre-computed in step 3.

c. Exponentiated ciphertext pre-computation: Multiply together all the partial Choice

Return Codes computed in step 4 (a multiplication / compression in the mathematical

group). Multiply the result by the second part (the phi) of the values pre-computed in

step 3.c.

9.3 EV Solution Intellectual Property Rights Notice (the Notice)

Scytl sVote is part of a larger system called EV Solution, developed under the "Framework Agreement"

entered into by and between Post CH Ltd (Swiss Post) and Scytl Secure Electronic Voting, S.A. (Scytl)

on September 30th, 2015.

Parts of this EV Solution system and other relevant details are defined below.

9.3.1 Definitions

The following terms shall have the meanings specified below:

"EV Solution" means an online voting system consisting of the Scytl Standard Software (also referred

to as Scytl sVote or Scytl Online Voting 2.0) in combination with the Swiss Post-Scytl Software, and all

the associated middleware provided by Scytl as a bundle with the Scytl Standard Software and the

Swiss Post-Scytl Software. Software below middleware (e.g. Linux OS and Windows OS and Oracle

software) that are needed to run the EV Solution are not part of the EV Solution.

"Intellectual Property Rights" or "IPRs", for the purposes of this Notice and pursuant to the

Framework Agreement, means copyright and patent rights (if any), know-how and trade secrets,

performance rights and entitlements to such rights.

 "Scytl Online Voting 2.0" is the brand name that was used to identify Scytl Standard Software in the

market.

"Scytl Standard Software" means all software developed by Scytl for the EV Solution, whose

architecture, specifications and capabilities are described in Scytl sVote documents, excluding Swiss

Post-Scytl Software and software developed by Scytl independently to the EV Solution.

"Software" means software code (source code and object code), user interfaces and documentation

(preparatory documentation and manuals) and including releases and patches etc.

"Scytl sVote" means the registered trademark proprietary to Scytl, that identifies Scytl Standard

Software in the market.

Scytl sVote

Protocol Specifications

162

"Swiss Post-Scytl Software" means the software developed for the EV Solution (excluding Scytl

Standard Software) pursuant to the Framework Agreement. Swiss Post-Scytl Software comprises of the

following:

i. Key Translation Module: A mapping service that translates external IDs to internal IDs for

specific entities so that external systems can integrate with sVote.

ii. Swiss Post Integration Tools: A group of applications that allow the integration between Swiss

Post's applications and sVote through file conversions.

iii. Swiss Post Voter Portal Frontend: Frontend application that guides the voters throughout all the

voting steps enabling them to successfully cast a vote for a particular election.

9.3.2 Copyright notice

9.3.2.1 Scytl Standard Software

All intellectual property rights in the Scytl Standard Software are Scytl’s sole property. Scytl owns and

shall retain all rights, title and interest in and to the Scytl Standard Software. Scytl Standard Software is

licensed to Swiss Post under the terms and conditions described in the Framework Agreement.

9.3.2.2 Swiss Post-Scytl Software

All intellectual property rights in the Swiss Post-Scytl Software are the joint property of Scytl and Swiss

Post (Joint IP).

9.3.2.3 EV Solution

All intellectual property rights in the EV Solution other than Joint IP will be owned by Scytl or by third

parties as applicable.

Scytl sVote

Protocol Specifications

163

