

Scytl sVote

Audit of the process with Control Components

Software version 2.1

Document version 3.1

Scytl sVote

Audit of the process

2

Scytl - Secure Electronic Voting

STRICTLY CONFIDENTIAL

© Copyright 2018 – SCYTL SECURE ELECTRONIC VOTING, S.A. All rights reserved.

This Document is proprietary to SCYTL SECURE ELECTRONIC VOTING, S.A. (SCYTL) and is

protected by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are

protected by patent applications.

No part of this Document may be: (i) communicated to the public, by any means including the right of

making it available; (ii) distributed including but not limited to sale, rental or lending; (iii) reproduced

whether direct or indirectly, temporary or permanently by any means and/or (iv) adapted, modified or

otherwise transformed.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

Scytl sVote

Audit of the process

3

Table of contents

1 Introduction .. 9

 Overview of the audit process ... 11

 Organization .. 12

2 Data structures ... 13

 SDM folder structure .. 13

2.1.1 The Authentication folder ... 16

2.1.2 The Extended Authentication .. 17

2.1.3 The Electoral Authority .. 17

2.1.4 The Voting Workflow ... 19

2.1.5 The Voter Material ... 19

2.1.6 The Vote Verification ... 20

2.1.7 The Election Information .. 24

 Exported Ballot Box ... 29

 Cleansed Ballot Box .. 35

 Mixed and Decrypted Ballot Boxes in 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3 ... 35

 Mixed and Decrypted Ballot Box in 𝐶𝐶𝑀4 ... 40

3 File signature verification .. 43

 Validate JSON files signature .. 43

3.1.1 Use a metadata JSON file with the same .json file name plus .metadata 43

3.1.2 Use a file with the same .JSON file name plus .sign .. 44

3.1.3 Store it in a field of the .JSON file .. 45

 Validate CSV files signature .. 45

3.2.1 Use a metadata JSON file with the same CSV file name plus .metadata 45

3.2.2 Use a file with the same CSV file name plus .sign .. 45

3.2.3 Store it in the last line of the CSV file .. 45

4 Configuration validation .. 47

 Certificates validation .. 53

 Signatures validation ... 54

 Control Components keys validation ... 55

4.3.1 Choice Return Codes encryption key pair ... 55

4.3.2 Mixing key pair ... 56

5 Vote decompression validation .. 57

6 Mixing and Decryption ... 58

Scytl sVote

Audit of the process

4

 Validation of the 𝐶𝐶𝑀4 output ... 58

 Validation of the 𝐶𝐶𝑀𝟏, 𝐶𝐶𝑀𝟐 and 𝐶𝐶𝑀𝟑 outputs .. 59

7 Cleansing validation.. 60

8 Ballot Box Validation .. 62

 Credential ID signing certificate validation .. 62

 Signature validations ... 62

8.2.1 Vote Cast Return Code ... 63

8.2.2 Authentication token .. 63

8.2.3 Encrypted vote ... 64

8.2.4 Receipt ... 64

8.2.5 Verification Card Public Key .. 64

 Proofs validations .. 65

8.3.1 Schnorr proof ... 65

8.3.2 Exponentiation proof validator ... 65

8.3.3 Plaintext equality proof validator.. 66

 Vote validations ... 66

8.4.1 Vote hash validation .. 67

8.4.2 Vote format .. 67

8.4.3 Vote matches signing certificate .. 68

 Codes Mapping Table validation ... 68

 Consistent IDs validation ... 70

 Voter information validation ... 71

 Authentication token expiration time validation ... 71

 Control Components Validation ... 71

 Secure Logs validation .. 73

9 Authentication Validation .. 77

10 References .. 78

11 Appendix ... 79

 Cryptographic primitives .. 79

11.1.1 Schnorr proof generator .. 79

11.1.2 Schnorr proof verifier ... 79

11.1.3 Exponentiation proof generator ... 80

11.1.4 Exponentiation proof verifier .. 81

11.1.5 Plaintext equality proof generator .. 82

11.1.6 Plaintext equality proof verifier .. 83

Scytl sVote

Audit of the process

5

11.1.7 Decryption proof generator .. 84

11.1.8 Decryption Proof verifier .. 85

11.1.9 X.509 Certificate Validation ... 86

11.1.10 Mixing proof generator ... 88

11.1.11 Mixing proof verifier ... 103

11.1.12 Group Element generation .. 109

11.1.13 Commitment generation .. 109

11.1.14 ElGamal encryption ... 110

 LDAP API ... 111

 Coding and conversions .. 111

 Data concatenation .. 112

 Cryptographic algorithms ... 112

 EV Solution Intellectual Property Rights Notice (the Notice) ... 112

11.6.1 Definitions .. 112

11.6.2 Copyright notice ... 113

Scytl sVote

Audit of the process

6

List of figures

Figure 1 – SDM folder structure .. 13

Figure 2 - System keys folder .. 15

Figure 3 – Authentication folder .. 16

Figure 4 – ExtendedAuthentication folder ... 17

Figure 5 – ElectoralAuthorities folder .. 18

Figure 6 - public key JSON structure .. 18

Figure 7 – VotingWorkflow folder .. 19

Figure 8 – VoterMaterial folder .. 19

Figure 9 – VoteVerification folder .. 20

Figure 10 - Voter Choice Return Code/Vote Cast Return Code generation public key JSON 23

Figure 11 – ElectionInformation folder .. 25

Figure 12 – Ballot Box folder ... 27

Figure 13 – VoteSetID folder ... 29

Figure 14 - System certificate hierarchy .. 47

Figure 15 - Election Event certificate hierarchy ... 51

Figure 16 - Control Components Election Event certificate hierarchy .. 52

Scytl sVote

Audit of the process

7

List of tables

Table 1 - Representation fields ... 31

Table 2 - System certificates details .. 50

Table 3 - Election Event certificates details ... 51

Table 4 - Control Components Election Event certificates details .. 52

List of files

File 1 - {adminBoardID}.pem ... 14

File 2 - platformRootCA.pem ... 14

File 3 - tenantCA.pem .. 14

File 4 - encryptionParameters.json .. 15

File 5 - authenticationContextData.json .. 16

File 6 - authenticationVoterData.json .. 17

File 7 - extendedAuthentication.csv .. 17

File 8 - electoralAuthority.json ... 18

File 9 - decryptionKey.json .. 19

File 10 - votingWorkflowContextData.json .. 19

File 11 - credentialData.csv ... 20

File 12 - voterInformation.csv .. 20

File 13 - codesMappingTablesContextData.csv .. 21

File 14 - verificationCardData.csv ... 21

File 15 - verificationCardSetData.json ... 21

File 16 - voteVerificationContextData.json .. 22

File 17 - derviedKeys.csv .. 22

File 18 - choiceCodeGenerationRequestPayload_{voteSetId}.json .. 23

File 19 - nodeContributions_{voteSetId}.json .. 24

File 20 - electionInformationContents.json .. 25

File 21 - ballot.json .. 26

File 22 - ballotBox.json .. 28

File 23 - ballotBoxContextData.json .. 28

File 24 - downloadedBallotBox.csv ... 29

File 25 - choiceReturnCodesComputationsJson .. 32

File 26 - ChoiceReturnCodesDecryptionJson .. 33

File 27 - voteCastCodeComputationsJson .. 34

File 28 - successfulVotes.csv .. 35

File 29 - failedVotes.csv .. 35

File 30 - CCM1, CCM2, CCM3 output ... 36

File 31 - voteEncryptionKey structure file .. 36

Scytl sVote

Audit of the process

8

File 32 - voteSetId structure file ... 37

File 33 - previousVotes structure file ... 37

File 34 - shuffledVotes structure file .. 37

File 35 - votes structure file ... 37

File 36 - zkProof structure file .. 38

File 37 - Shuffle proof structure file .. 39

File 38 - commitmentParameters.json ... 40

File 39 - publicKey.json ... 41

File 40 - votes.csv .. 41

File 41 - votesWithProof.csv .. 42

File 42 - decompressedVotes.csv .. 42

File 43 - auditableVotes.csv .. 43

File 44 - metadata JSON file ... 43

File 45 - certificate in .PEM format .. 53

Scytl sVote

Audit of the process

9

1 Introduction

This document provides a detailed description of how to verify that the election results accurately reflect

the intention of legitimate voters. The audit of the system is possible due to the evidences (audit data)

that the following components of the system produce during the whole election live cycle, starting at

election configuration phase, continuing during the voting phase and finalizing at the end of the election

counting phase (the details of the operations implemented during these phases are given in [1]):

• Print Office: Is the system component responsible for generating, printing and delivering the

voting cards to the voters and for generating the election keys. Both the voting card generation

and the election keys generation are done in physically isolated infrastructure.

• Voting Server: It authenticates the voter and receives, processes and stores in the Ballot Box

the votes cast by them. From an architectural point of view, the voting server is implemented

using different contexts. Each one of these contexts is in charge of executing a different part of

the protocol:

o Voting Workflow Context: Receives and manages client requests, contains the

possible workflows per different Election Events and stores the status of the vote.

o Extended Authentication Context: Participates in the first steps of the authentication

process in case the system requires additional authentication values to start voting.

o Authentication Context: Authenticates the voter in the system and performs

authentication token validation.

o Election Information Context: Stores the election information and the whole Ballot

Box. performs vote and confirmation validations.

o Vote Verification Context: Performs vote validations, stores the Choice Return Codes

and the Vote Cast Return Code and retrieves them when requested.

o Voter Material Context: Stores voter related materials.

• Control Components: There are two types of Control Components:

o Choice Return Codes Control Components (CCR): They will implement the

generation of the Choice Return Codes and the Vote Cast Return Code by using a

distributed approach. These online components (CCR1, CCR2, CCR3, CCR4) will work in

parallel and the results of their cryptographic operations will be combined to obtain the

short Choice Return Codes and Vote Cast Return Code. These components will

produce zero knowledge proofs as well as secure logs to give evidence that the

encrypted votes stored in the Ballot Box have been validated and processed by them.

o Mixing Control Components (CCM): These components implement the mixing and

decryption of the votes during the counting process and will also be involved in the

generation of the election key. By design, a Mixing can be implemented using several

Scytl sVote

Audit of the process

10

Mix-nodes to shuffle and transform (re-encrypt) the votes in sequence. The approach

will be based on implementing these mix-nodes using four Control Components, three

of them online (CCM1, CCM2, CCM3) and one of them offline (CCM4) executed in the

Canton environment. With the aim of distributing the decryption process across them,

each online mix-node performs a partial decryption after the mixing, using its own

decryption key generated during the configuration. The last mix-node (CCM4) decrypts

the votes using an Electoral Authority key reconstructed in the Canton environment

using a secret sharing scheme. These components will provide zero knowledge proofs

that both the mixing and the decryption processes have been executed correctly, so the

voters’ privacy is protected.

• Election Administrators: They are responsible for generating the election configuration,

verifying it, signing the results and publishing them. We distinguish between the Administration

Portal that performs non-cryptographic operations (configure the ballot, define the Electoral

Board members, etc.) and the Administration Board that assures the integrity and security of

the voting process. This entity owns a key pair whose private key is shared among the Board

members and is used to sign both the configuration, the outputs of the 𝐶𝐶𝑀4 and the results.

This key generation, key sharing and signature of the configuration are done in the Print Office

environment. On the other hand, the Administration Board key reconstruction, the signature of

the 𝐶𝐶𝑀4 output and the signature of the results are done in the Canton environment.

• To implement some of the processes executed by the components mentioned above, a software

component called Secure Data Manager (SDM) is used. The SDM is operated in the Print

Office environment during the voting card generation and election key generation, and in the

Canton Environment during the Administration Board and Electoral Board key reconstruction

processes.

The Print Office needs to interact with the Choice Return Codes Control Components during the

generation of the voting cards and with the online Mixing Control Components during the generation of

the election keys. In addition, it also needs to interact with the Administration Portal to obtain the election

configuration (e.g., candidate names). However, the Print Office is an environment designed to be

implemented offline for enforcing its security (i.e., it is considered as a trusted component in the abstract

security model). For this reason, another module is used as a bridge between the offline environments

and the online ones. This bridge module also uses the SDM software component but does not perform

any operation neither on the input nor on the output, and the integrity is preserved since the data is

signed by the corresponding component. (e.g., Control Component).

During the counting phase, the reconstruction of the Electoral Board and the Administration Board key

needed by the 𝐶𝐶𝑀4 Control Component to decrypt the votes and signing the output information in the

Canton environment, is done using the SDM software component.

Scytl sVote

Audit of the process

11

As a result of the execution of the SDM in each environment and after the interaction with the online

components using the bridge, a folder structure is created containing all the configuration, the Ballot

Box and the output of the mixing and decryption processes.

For simplicity, from now on the bridge use of the SDM will be omitted and the explanation will refer

directly to the interaction of the SDM module functions with the online components. In addition, it will be

assumed that when there is a reference to SDM in the configuration phase, is the software component

executed in the Print Office environment, and in the counting phase, is the software component executed

in the Canton environment with the 𝐶𝐶𝑀4.

The audit data produced by the system components mentioned above is located in the Global Bulletin

Board, that is implemented as a distributed system, meaning that the information stored in it comes

from different sources (local Bulletin Board) and repositories.

• The Ballot Box where the encrypted votes and their proofs are stored. Voting Server and

Control Components are keeping a local Ballot Box of all the votes that are processed by the

solution.

• The Secure Logger that registers all the actions that takes place in each entity by producing

immutable logs that are protected by means of cryptographic mechanisms, ensuring that

nobody can manipulate the entries stored in the log without being detected. The information

stored in the log could be used to recognize any inconsistency in the votes cast and recorded

in the Ballot Box. All the components of the solution have a Secure Logger of the transactions.

• The folder structure created to store the configuration and the output of the mixing and

decryption processes.

 Overview of the audit process

To ensure the integrity of the data processed through different voting system components, and that

these processes are accurate and fair, the following auditing processes need to be performed:

• Ensure that the configuration generated in the SDM is the configuration used during the voting

phase and that has not been altered after it has been generated. This can be easily verified

since the Administration Board signs all the configuration generated in the SDM. Therefore,

verifying the signature with the AB certificate, it can be ensured that this data has not been

altered since its generation.

• Ensure that all the encrypted votes stored in the Ballot Box have been cast during the voting

phase by voters that are in the electoral roll. This can be verified checking that all the votes

stored in the Ballot Box correspond to valid authentication tokens generated during the

authentication phase.

Scytl sVote

Audit of the process

12

• Ensure that all the votes that are part of the tally correspond to votes that have been validated

by the voters. This can be verified checking that the encrypted votes at the input of the counting

process are only those that have been confirmed by the voters.

• Ensure the integrity of the Ballot Box, that is, no votes are deleted after they are cast, and no

votes are added without being processed by the Control Components. This can be verified using

the Secure Logs generated by the Control Components.

• Ensure that the output of each Choice Return Code Control Component has not been altered

during transportation. Since the outputs are signed by the CCRs and stored in the Ballot Box, it

is possible to validate that they have not been modified after their generation.

• Ensure that the output of each Mixing Control Component is the input of the following and that

data have not been altered during transportation. Since each component digitally signs its

output data, verifying the signature of a component input data with the previous component

digital certificate, it can be ensured that this data has not been altered since its generation or

processing by such previous component.

• Ensure that the behavior of each component is the expected. The ways in which we can verify

the correct operation of a component may vary:

o Cleansing component applies some public rules over the input votes. Therefore, they

can be audited by applying such rules in the same input using independent software

and checking that the output generated is the same.

o Mixing Control Components use sensitive information, such as a private permutation of

votes or private keys, to perform the mixing and decryption operations. This private

information cannot be given to an audit application to reproduce the same output, since

it could break the voters’ privacy. For this reason, both the mixing and decryption

processes generate mathematical proofs such that the correct behaviour of the

component can be assured just validating the proofs and without using sensitive

information.

 Organization

This document is organized as follows:

• In section 2.1 we define which is the folder structure generated by the SDM and which is the

information stored inside each folder.

• In section 3 we explain how to validate the signatures computed over the different types of files

generated by the system.

• The following sections explain how to audit the configuration phase (section 4), the vote

decompression operation (section 5), the mixing and decryption processes (section 6) and the

cleansing (section 7).

Scytl sVote

Audit of the process

13

• The validation of the Ballot Box is explained in section 8 and in section 9 how to validate that

the votes in the Ballot Box have been cast by authenticated voters.

• Finally, the Appendix contains the description of several cryptographic primitives and some

information common to all validations (e.g., how to concatenate data).

2 Data structures

In this section the audit data generated by the system components is presented, how it is stored and

where it can be found. The generation of secure logs by the components has been omitted, since there

will be a direct reference to them whenever a validation is performed.

The explanation covers first the folder structure generated by the Secure Data Manager, with a

description of the files stored in each one of the folders and how the information is displayed inside.

Then, more details are provided on how the information is stored in the file that contains the Ballot Box

and which is the output of the cleansing.

Finally, there is a differentiation between the output of the three online Mixing Control Components and

the output of the offline one, what it contains and in which format.

 SDM folder structure

Inside the config folder, the SDM generates as many folders as Election Events are currently running.

The name of each of these folders is the corresponding election_event_id.

Figure 1 – SDM folder structure

Scytl sVote

Audit of the process

14

Additionally, it generates the csr folder that contains the Administration Board digital Certificates in PEM

format.

File 1 - {adminBoardID}.pem

The config folder also contains the Platform Root CA and the Tenant CA:

File 2 - platformRootCA.pem

File 3 - tenantCA.pem

The systemKeys folder contains some of the keys generated during the system configuration process

(we refer the reader to [1] for more details). These keys are those used to protect the integrity of the

election keys.

-----BEGIN CERTIFICATE-----

MIIDlDCCAnygAwIBAgIUDK2MyRFavMfrVbocJRewzVXOyr0wDQYJKoZIhvcNAQEL

BQAwXzEWMBQGA1UEAwwNVGVuYW50IDEwMCBDQTEWMBQGA1UECwwNT25saW5lIFZv

dGluZzEVMBMGA1UECgwMT3JnYW5pemF0aW9uMQkwBwYDVQQHDAAxCzAJBgNVBAYT

……..

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIDlDCCAnygAwIBAgIUQDW64EpSXgpmKPFWUzDckHwm5OcwDQYJKoZIhvcNAQEL

BQAwXzEWMBQGA1UEAwwNVGVuYW50IDEwMCBDQTEWMBQGA1UECwwNT25saW5lIFZv

dGluZzEVMBMGA1UECgwMT3JnYW5pemF0aW9uMQkwBwYDVQQHDAAxCzAJBgNVBAYT

……..

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIDcDCCAligAwIBAgIVAI+oAu6TX79tz84yGef2FBh0xANeMA0GCSqGSIb3DQEB

CwUAMF8xFjAUBgNVBAMMDVNjeXRsIFJvb3QgQ0ExFjAUBgNVBAsMDU9ubGluZSBW

b3RpbmcxFTATBgNVBAoMDE9yZ2FuaXphdGlvbjEJMAcGA1UEBwwAMQswCQYDVQQG

……..

-----END CERTIFICATE-----

Scytl sVote

Audit of the process

15

Figure 2 - System keys folder

Given one Election Event, two folders are generated.

• The offline folder contains information to be used during the configuration process of the

election, but it will not be used outside the offline environment (Print Office).

• On the other hand, the online folder contains all the information that will be exported to be used

during the election: voting cards, authentication information, election configuration, etc. and the

information of the counting process. In fact, the online folder contains:

o One folder for each of the contexts in the voter portal: authentication,

electionInformation, votingWorkflow, voterMaterial,

voteVerification, extendedAuthentication

o One folder for the information that is going to be printed (the voting cards).

o Another for the information regarding the electoral authorities.

o Finally, the encryptionParameters file contains the values that define the

mathematical group for the ElGamal encryption scheme:

File 4 - encryptionParameters.json

Where p is the prime number representing the field ℤ𝑝, q the large prime order of the cyclic subgroup

and g a generator of the cyclic subgroup.

{

"p",

 "q",

 "g"

}

Scytl sVote

Audit of the process

16

The information contained inside the online folder is explained in the following subsections.

2.1.1 The Authentication folder

The authentication folder contains two files with their corresponding signatures:

Figure 3 – Authentication folder

• The authenticationContextData file contains all the information required by the

authentication context to run the authentication process, that is, to generate the challenge and

the authentication token.

File 5 - authenticationContextData.json

• The authenticationVoterData file contains the election certificates to be sent to the voting

client during the authentication to check their validity.

{

"electionEventId",

 "authenticationTokenSignerKeystore",

 "authenticationTokenSignerPassword",

"authenticationParams": {

 "challengeResExpTime",

 "authTokenExpTime",

"challengeLength"

 }

}

Scytl sVote

Audit of the process

17

File 6 - authenticationVoterData.json

2.1.2 The Extended Authentication

The extendedAuthentication folder contains as many folders as Voting Card Sets with the required

information to perform the first part of the authentication process. Each line of this file corresponds to

one voter in the Voting Card Set.

Figure 4 – ExtendedAuthentication folder

File 7 - extendedAuthentication.csv

2.1.3 The Electoral Authority

One electoral authority can be assigned to one or more Ballot Boxes, but one Ballot Box cannot have

more than one electoral authority assigned.

{

"authenticationTokenSignerCert",

 "electionEventId",

 "electionRootCA",

"authoritiesCA",

"credentialsCA ",

"servicesCA ",

}

authID,extraAuhtParamBase64,encryptedSVK,eeid,saltBase64,credentialID

Scytl sVote

Audit of the process

18

Figure 5 – ElectoralAuthorities folder

• The electoralAuthority file contains the election public key, that will be used to encrypt

the votes:

File 8 - electoralAuthority.json

• The value stored in the “publicKey” field is a JSON in base64 that has the following structure

once decoded:

Figure 6 - Public key JSON structure

• The elements field has as many elements as the number of components of the key.

• The decryptionKey file contains the Electoral Board public key:

{

"id",

 "publicKey",

}

{

"publicKey":{

“zpSubgroup”:{

“g”:

“p”:

“q”:

 }

 “elements”:{…}

}

Scytl sVote

Audit of the process

19

File 9 - decryptionKey.json

• The value stored in the publicKey field has the same structure as the public key mentioned

above.

2.1.4 The Voting Workflow

Figure 7 – VotingWorkflow folder

The votingWorkflowContextData file contains the election configuration to be used by the voting

workflow context.

File 10 - votingWorkflowContextData.json

2.1.5 The Voter Material

Figure 8 – VoterMaterial folder

For each voting card set, the credentialData file contains one row per voter belonging to that set

with the following information:

{

"electoralAuthorityId",

 "publicKey",

}

{

 "maxNumberOfAttempts",

}

Scytl sVote

Audit of the process

20

File 11 - credentialData.csv

Each row of the voterInformation file contains the IDs of a specific voter that is part of the voting

card set. The IDs are comma separated:

File 12 - voterInformation.csv

This information is uploaded to the voter material context.

2.1.6 The Vote Verification

The voteVerification folder is organized by Verification Card Sets and contains the following

folders:

Figure 9 – VoteVerification folder

• Each line of the codesMappingTablesContextData file corresponds to one voter in the

Verification Card Set and includes the verification card ID and the mapping table of that voter in

base 64. The mapping table contains as many entries as Choice Return Codes and one

additional entry for the Vote Cast Return Code.

VotingCardID, voterCredKeystoreBase64

VotingCardID,BallotID,BallotBoxID,CredentialID,ElectionEventID,VotingCardSetID,VerificationCardId

,VerificationCardSetId

Scytl sVote

Audit of the process

21

File 13 - codesMappingTablesContextData.csv

• Each line of the verificationCardData file corresponds to one voter in the Verification

Card Set and contains the following data:

File 14 - verificationCardData.csv

• The verificationCardSetData file contains the information to be sent to the Client during

the authentication phase. This information is common to all the voters belonging to the

Verification Card Set.

File 15 - verificationCardSetData.json

• The voteVerificationContextData file contains all the information needed by the Vote

Verification Context during the voting phase. The passwords included in this file are encrypted

using the corresponding system key.

VerificationCardId,MappingTableBase64

VerificationCardId,VerificationCardKeystoreBase64,VerificationCardPublicKe

yAndSignatureBase64, ElectionEventID, VerificationCardSetId

{

"electionEventId",

 "choicesCodesEncryptionPublicKeyBase64",

"verificationCardIssuerCert",

 "verificationCardSetId",

"voteCastCodeSignerCert"

}

Scytl sVote

Audit of the process

22

File 16 - voteVerificationContextData.json

Each Choice Return Codes encryption public key (CCR1choiceCodesEncPKBase64,

CCR2choiceCodesEncPKBase64, CCR3choiceCodesEncPKBse64,

CCR4choiceCodesEncPK) is a JSON encoded in base64 that has the structure defined in

Figure 6.

• The derivedKeys file contains the public keys generated in the Control Components (Voter

Choice Return Codes generation public key and Voter Vote Cast Return Codes generation

public key) corresponding to the derived voter’s private keys. Each row of this file has the

following information:

File 17 - derviedKeys.csv

Each Voter Choice Return Code Generation public key and each Voter Vote Cast Return Code

Generation pubic key is a JSON encoded in base 64 that has the following structure:

{

"electionEventId",

"encryptionParameters": {

"p",

 "q",

 "g"

},

"verificationCardSetId",

"electoralAuthorityId",

 "codesSecretKeyPassword",

"codesSecretKeyKeyStore",

"nonCombinedChoiceCodesEncryptionPublicKeys":{CCR1choiceCodesEncPKBase64;

CCR2choiceCodesEncPKBase64;CCR3choiceCodesEncPKBse64;CCR4choiceCodesEncPK

}

}

VerificationCardId,["CCR1VoterChoiceReturnCodeGenPKB64","CCR2VoterChoiceReturnCodeGenPKB64",

"CCR3VoterChoiceReturnCodeGenPKB64","CCR4VoterChoiceReturnCodeGenPKB64"],["CCR1VoterVoteCastReturnC

odeGenPKB64","CCR2VoterVoteCastReturnCodeGenPKB64",

"CCR3VoterVoteCastReturnCodeGenPKB64","CCR4VoterVoteCastReturnCodeGenPKB64"]

Scytl sVote

Audit of the process

23

Figure 10 - Voter Choice Return Code/Vote Cast Return Code generation public key JSON

• The choiceCodeGenerationRequestPaylod.{voteSetId} file contains the information

sent to the Choice Return Codes Control Components during the configuration phase.

File 18 - choiceCodeGenerationRequestPayload_{voteSetId}.json

The field choiceCodeGenerationInputList contains as many elements as the number of

Verification Card Ids in the Verification Card Set. The signature of this file is done using the

Administration Board private key, and the corresponding certificate is included in the

signature.certificateChain field.

• The nodeContributions.{voteSetId}.json file contains the information sent by the

Control Components after computing the exponentiation of the encrypted prime numbers and

the exponentiation of the encrypted ballot casting keys.

{

"zpGroupElement": {

"value",

 "p",

 "q"

}

}

{

"tenantId",

"electionEventId",

"verificationCardSetId",

 "chunkId",

"choiceCodeGenerationInputList": [{

"verificationCardId",

 "encryptedBallotCastingKey",

 "encryptedRepresentations"

},{…}

],

"signature":{

"signatureContents",

"certificateChain":[…]

 }

}

Scytl sVote

Audit of the process

24

File 19 - nodeContributions_{voteSetId}.json

This JSON structure is repeated four times, one per Control Component. Inside the

choiceCodeGenerationOutputList field there are as many elements as the number of Verification

Card Ids in the Verification Card Set. The computedBallotCastingKey contains the exponentiated

encrypted ballot casting key, the computedRepresentations contains the exponentiated encrypted

prime numbers and the choiceCodesKeyCommitmentJson and

theballotCastingKeyCommitmentJson contain the Voter Choice Return Codes generation public

key and the Voter Vote Cast Return Code generation public key correspondingly. Notice that these keys

must be equal to those stored in the File 17 file. Finally, the signature of the payload

(signature.signatureContents) is computed using the Control Component signing private key

and the corresponding certificate is stored in signature.certificateChain.

2.1.7 The Election Information

The electionInformation folder is organized by Ballots and Ballot Boxes, since one Ballot could

belong to more than one Ballot Boxes.

[{

"correlationId",

"requestId",

"payload": {

"tenantId",

 "electionEventId",

 "verificationCardSetId"

"chunkId"

"choiceCodeGenerationOutputList": [{

"verificationCardId",

 "encryptedBallotCastingKey",

 "computedBallotCastingKey",

"computedRepresentations",

 "choiceCodesKeyCommitmentJson",

"ballotCastingKeyCommitmentJson"

 },{…}],

"signature":{

"signatureContents",

"certificateChain":[…]

 }

}

},{…}]

Scytl sVote

Audit of the process

25

Figure 11 – ElectionInformation folder

• The electionInformationContents file contains the information used by the election

information context to perform some validations during the voting phase.

File 20 - electionInformationContents.json

• The ballot.json contains the election information to be displayed to the voter, such as the

questions and the possible answers. It also contains some rules to be enforced/checked on the

voter’s selections (for example, not selecting more than one answer).

{

"electionEventId",

 "electionRootCA",

"electionInformationParams":{

"numVotesPerVotingCard",

 "numVotesPerAuthToken"

},

"authoritiesCA",

"credentialsCA",

 "servicesCA"

}

Scytl sVote

Audit of the process

26

File 21 - ballot.json

"id",

 "defaultTitle",

"defaultDescription",

"alias",

"electionEvent":{

"id"

},

"contests":[{

"id",

 "defaultTitle",

"alias",

“defaultDescription”:

"electionEvent":{

"id"

},

"template",

"fullBlank",

"options":[{

"id",

 "representation",

"attribute"

 }],

"attributes":[{

"id",

 "alias",

"correctness",

"related"

 }],

"questions":[{

"id",

 "max",

"min",

"accumulation",

"writeIn",

 "blankAttribute",

"writeInAttribute",

"attribute",

"fusions":[]

 }],

"encryptedCorrectnessRule",

"decryptedCorrectnessRule",

}],

"status",

"details",

"synchronized",

"ballotBoxes",

"signedObject"

},}

Scytl sVote

Audit of the process

27

Each folder corresponding to one Ballot Box contains the following information:

Figure 12 – Ballot Box folder

Most of the information needed to audit the counting process is stored in this folder.

• The ballotBox and ballotBoxContextData contain the election configuration related

with one specific Ballot Box (for instance, the election dates), that will be uploaded to the

election information context to be used during the voting phase.

Scytl sVote

Audit of the process

28

File 22 - ballotBox.json

File 23 - ballotBoxContextData.json

The keystore password is encrypted with the corresponding system key.

• The publicKey file contains the election public key.

• The downloadedBallotBox file contains all the information stored in the Election Information

Context database during the voting phase (see more details in section 2.2)

• The successfulVotes and failedVotes files are the output of the cleansing and they are

stored for auditing purposes. The last row of each file contains their signature (see more details

in section 2.3).

• The decompressedVotes file contains the decompressed decrypted voting options (see

more details in section 2.4).

• The auditableVotes file contains the votes that have experimented some decryption error

(see further details in section 2.5).

{

"id",

 "gracePeriod",

"alias",

"encryptionParameters": {

"p",

 "q",

 "g"

},

"electoralAuthorityId",

"writeInAlphabet",

 "confirmationRequired"

"ballotBoxCert",

"bid",

"test"

"startDate",

"endDate",

 "eeid"

}

{

"id",

 "passwordKeystore",

"keystore",

"electionEvent": {

"id",

}

}

Scytl sVote

Audit of the process

29

• The {tenantID}-{eeid}-ballotBoxID}-{voteSetIndex}-{ccn_m1}.json,

{tenantID}-{eeid}-ballotBoxID}-{voteSetIndex}-{ccn_m2}.json and

{tenantID}-{eeid}-ballotBoxID}-{voteSetIndex}-{ccn_m3}.json files, contain

the output of the online Mixing Control Components. Their content is explained in more detail

in section 2.4.

Figure 13 – VoteSetID folder

This folder contains the output of both the mixing and the decryption processes executed by the last

Control Component, that will be explained in more detail in section 2.5.

 Exported Ballot Box

The Exported Ballot Box is obtained from a dump of the Election Information Context database. When

the Ballot Box is downloaded is signed using the corresponding Ballot Box private key. The Exported

Ballot Box is stored in the following path:

config/{election_event_id}/ONLINE/electionInformation/ballots/{ballot_id}/b

allotBoxes/{ballot_box_id}/downloadedBallotBox.csv

and its signature is stored in the last row of the CSV file. Each element stored in this file corresponds to

one voter and contains the concatenation of the following information: the vote, the receipt and the

authentication token separated by commas; and the Vote Cast Code, the Vote Cast Code signature,

the Choice Codes Computations and the Vote Cast Code Computations sent by the Control

Components, the Tenant ID, the Election Event ID, the Voting Card ID, the Ballot ID and the Ballot Box

ID separated using pipes.

File 24 - downloadedBallotBox.csv

The vote, the receipt and the authentication token have the following structure:

{“vote”:{…}, “receipt”:{…},”authenticationToken”:{…}}|VoteCastCode|VoteCastCodeSignature|

ChoiceCodesComputations|VoteCastCodeComputations|TenantID|ElectionEventID|

VotingCardID|BallotID|BallotBoxID

Scytl sVote

Audit of the process

30

The schnorrProof, exponentiationProof and plaintextEqualityProof contained in the

vote, are represented as:

Some of these fields have a particular representation that is detailed below:

FIELD REPRESENTATION

verificationCardPublicKey Base64

verificationCardPKSignature Base64

Signature (vote) Base64

Certificate pem encoding

authenticationTokenSignature Base64

Signature (receipt) Base64

receipt Base64

Id (authentication token) Base64

"vote":{

"tenantId",

 "electionEventId",

 "ballotId",

 "ballotBoxId",

 "votingCardId",

"encryptedOptions",

"encryptedPartialChoiceCodes",

"encryptedWriteIns",

"correctnessIds"

"verificationCardPublicKey",

"verificationCardPKSignature",

"signature"

"certificate",

 "credentialId",

"authenticationTokenSignature",

 "authenticationToken": "{…}",

 "schnorrProof":"{…}",

"cipherTextExponentiations",

 "exponentiationProof":"{…}",

 "plaintextEqualityProof":"{…}",

"verificationCardId",

 "verificationCardSetId"

},

" proof ":"{

 "zkProof":{

 "q",

 "hash",

 "values":[value1,value2,…]

 },

}

"receipt":{

 "signature",

 "receipt",

}

"authenticationToken":{

 "id",

 "voterInformation":{

 "tenantId",

 "electionEventId",

 "votingCardId",

 "ballotId",

 "credentialId",

 "verificationCardId",

 "ballotBoxId",

 "votingCardSetId",

 "verificationCardSetId"

 },

 "timestamp",

 "signature"

}

Scytl sVote

Audit of the process

31

Signature (authentication token) Base64

proof.zkProof.q Base64

proof.zkProof.hash Base64

proof.zkProof.values Base64

Table 1 - Representation fields

The following additional details are specifically relevant for the audit purposes of this document:

• The encryptedOptions field inside the vote contains two elements separated by the

character “;” corresponding to the encryption of the product of prime numbers.

• The encryptedPartialChoiceCodes field inside the vote contains as many elements as

voting options the voter can select plus 1, separated by the character “;”.

• The encryptedWriteIns field inside the vote contains as many elements as write ins

allowed by the ballot, separated by the character “;”.

• The cipherTextExponentiations field inside the vote contains two elements separated

by the character “;” related with the gamma element and the phi element that encrypts the

product of prime numbers.

• The ChoiceCodesComputations are encoded using the class

java.util.zip.GZIPOutputStream. In order to decode them, the following steps should

be followed:

o Decode base 64 and obtain a byte array

o Unzip the result to text and obtain two JSON structures. The first one corresponds to

the Control Components computations during the exponentiation of the partial Choice

Return Codes and the second one contains the Control Components computations

during the Choice Return Codes partial decryption.

14403919210581401623325733864581781801234214138786431038027996863554085613343606

606388172401678984207330810947532416905732...;1101866553288056955997391830101674

83056285233496147467493622620364295559745459877174045911...

Scytl sVote

Audit of the process

32

File 25 - choiceReturnCodesComputationsJson

This JSON contains four times the data structure presented in the files above, one per Control

Component.

• The primeToComputedPrime field contains as many pairs of

{partialCodeElement:exponentiatedPartialCodeElement} as the number

of elements of the encrypted partial choice codes.

• The partialCodeElement represents one element of this ciphertext, and the

exponentiatedPartialCodeElement is the exponentiation computed by the

Control Components using as basis de partial code element and as an exponent the

voter’s derived key, whose corresponding public key is stored in

choiceCodesDerivedKeyJson.

• The exponentiation proof in exponentiationProofJson field is the proof

computed by the Control Component to demonstrate that the exponentiation has been

calculated using the right private key. Fields hash, values and q are encoded in

base64.

• Finally, the signatureContents field contains the signature of the previous

elements using the Control Component signing private key, and the

certificateChain contains the certificate that must be used to validate the

signature and also its certificate chain, more concretely, it contains 3 certificates:

[Control Component Signing Certificate, Control Components CA, Platform Root CA].

Note: The public keys stored in the choiceCodesDerivedKeyJson must be equal to the

Voter Choice Return Code Generation public keys stored in the File 17.

[{

 "primeToComputedPrime":{partialCodeElement:exponentiatedPartialCodeElement},…

 “exponentiationProofJson”: {

 “zkProof”: {

 “hash”,

 “values”:[…],

 “q”

 }

 },

 “choiceCodesDerivedKeyJson”

 “signature”: {

 “signatureContents”,

 “certificateChain”:[…]

 }

…]

Scytl sVote

Audit of the process

33

File 26 - ChoiceReturnCodesDecryptionJson

This JSON contains four times the data structure presented in the files above, one per Control

Component.

• The decryptionContributionResult field contains as many elements as the

number of elements of the Control Component Choice Return Codes encryption key.

• The value in the exponentiationProofJson field is the proof computed by the

Control Component to demonstrate that the exponentiation has been calculated using

the right private key.

• Fields hash, values and q are encoded in base64.

• The publicKeyJson field contains the Control Component Choice Return Codes

encryption public key.

• Finally, the signatureContents field contains the signature of the previous

elements using the Control Component signing private key, and the

certificateChain contains the certificate that must be used to validate the

signature and also its certificate chain, more concretely, it contains 3 certificates:

[Control Component Signing Certificate, Control Components CA, Platform Root CA].

Note: The Control Component Choice Return Code encryption public key elements from File

15 must be equal to the public key stored in the publicKeyJson.

[{

 "decryptionContributionResult":[

“zpGroupElement”:{

“value”:,

“p”:,

“q”

}

…

],

 “exponentiationProofJson”: {

 “zkProof”: {

 “hash”,

 “values”:[…],

 “q”

 }

 },

 “publicKeyJson”

 “signature”: {

 “signatureContents”,

 “certificateChain”:[…]

 }

…]

Scytl sVote

Audit of the process

34

• The VoteCastCodeComputations are encoded using the class

java.util.zip.GZIPOutputStream. In order to decode them, the following steps should

be followed:

o Decode base 64 and obtain a byte array

o Unzip the result to text and obtain the following JSON structure:

File 27 - voteCastCodeComputationsJson

This JSON contains four times the data structure presented in the file above, one per Control

Component.

• The primeToComputedPrime field contains one pairs of

{partialCodeElement:exponentiatedPartialCodeElement} where

partialCodeElement corresponds to the Confirmation Message and the

exponentiatedPartialCodeElement is the exponentiation computed by the

Control Components using as basis de partial code element and as an exponent the

voter’s derived key, whose corresponding public key is stored in

choiceCodesDerivedKeyJson.

• The exponentiation proof in exponentiationProofJson field is the proof computed

by the Control Component to demonstrate that the exponentiation has been calculated

using the right private key. Fields hash, values and q are encoded in base64.

• Finally, the signatureContents field contains the signature of the previous elements

using the Control Component signing private key, and the certificateChain

contains the certificate that must be used to validate the signature and also its certificate

chain, more concretely, it contains 3 certificates: [Control Component Signing

Certificate, Control Components CA, Platform Root CA].

Note: The public keys stored in the castCodeDerivedKeyJson must be equal to the Voter

Choice Return Code Generation public keys stored in the File 17.

[{

 "primeToComputedPrime":{partialCodeElement:exponentiatedPartialCodeElement},

 “exponentiationProofJson”: {

 “zkProof”: {

 “hash”,

 “values”:[…],

 “q”

 }

 },

 “castCodeDerivedKeyJson”

 “signature”: {

 “signatureContents”,

 “certificateChain”:[…]

 }

…]

Scytl sVote

Audit of the process

35

 Cleansed Ballot Box

The Cleansing process outputs are stored in

config/{election_event_id}/ONLINE/electionInformation/ballots/{ballot_id}/b

allotBoxes/{ballot_box_id}:

1) successfulVotes.csv: This file contains all the votes that have passed all the validations

of the cleansing process. Each row of the CSV contains the following information corresponding

to one vote: voting card ID, timestamp and receipt value. The receipt value is in Base64

representation. The last row of this file is the signature in base64.

File 28 - successfulVotes.csv

2) failedVotes.csv: This file contains the non-confirmed votes. Each row of the CSV file

contains the following information corresponding to one failed vote: voting card ID, timestamp,

error (NOT_CONFIRMED) and receipt value. The last row of this file is the signature in base64.

File 29 - failedVotes.csv

Additionally, the cleansed votes are stored as part of the first Mixing node output, in the

previousVotes field (see File 30 - CCM1, CCM2, CCM3 output in the next section).

 Mixed and Decrypted Ballot Boxes in 𝐶𝐶𝑀1, 𝐶𝐶𝑀2 and 𝐶𝐶𝑀3

The mixing and decryption processes executed in each online Control Component (𝐶𝐶𝑀1, 𝐶𝐶𝑀2, 𝐶𝐶𝑀3)

output a JSON file with the mixed and decrypted Ballot Boxes, the corresponding proofs, and all the

information needed to verify the operations.

This JSON files are stored in:

config/{election_event_id}/ONLINE/electionInformation/ballots/{ballot_id}/b

allotBoxes/{ballot_box_id}/{tenantID}-{eeid}-{ballotBoxID}-{voteSetIndex}-

{ccn_m{1,2,3}}.json

and contain the following information:

VotingCardID;Timestamp;Receipt

VotingCar

VotingCardID;Timestamp;Error;Receipt

Scytl sVote

Audit of the process

36

File 30 - CCM1, CCM2, CCM3 output

• The voteEncryptionKey contains the key with which the votes are encrypted after

computing the partial decryption in the Control Component, or, in other words, is the

previousVoteEncryptionKey without the contribution of the Control Component mixing

public key.

Note: In case of the first Control Component the previousVoteEncryptionKey will be the

Election public key and in case of the third Control Component the voteEncryptionKey will

be the Electoral Board public key. The structure of these fields is the following:

File 31 - voteEncryptionKey structure file

• Before starting the mixing and decryption processes, in case the number of votes is too big to

be processed at once, the Ballot Box is split into vote sets. The information in the voteSetID

field is used to identify the vote set that has been mixed and decrypted.

"voteEncryptionKey":{…},

“voteSetID”:{…},

“votes”:[…],

“electoralAuthorityId”,

“encryptionParameters”:{

 “g”,

 “p”,

 “q”

}

“decryptionProofs”:[…],

“shuffledVotes”:[…],

“shuffleProof”:[…],

“commitmentParameters”:[…],

“timestamp”,

“signature”:{

“signatureContents”.

“certificateChain”:[…]

},

“previousVotes”:[…],

“previousVoteEncryptionKey”:{…}

[--[--

"previousVoteEncryptionKey":{

 "zpSubgroup":{

“g”,

 “p”,

 “q”

 },

 “elements”:[…]

}

"voteEncryptionKey":{

 "zpSubgroup":{

 “g”,

 “p”,

 “q”

 },

 “elements”:[…]

}

Scytl sVote

Audit of the process

37

File 32 - voteSetId structure file

• The previousVotes field contains the ciphertexts that have been the input of the mixing

executed in the current Control Component.

File 33 - previousVotes structure file

• The shuffledVotes field contains the ciphertexts at the output of the mixing, that is, the

ciphertexts in the previousVotes field mixed.

File 34 - shuffledVotes structure file

• The votes field contains the ciphertexts at the output of the decryption, that is, the

ciphertexts in the shuffledVotes field partially decrypted.

File 35 - votes structure file

• The decryptionProofs field contains as many decryption proofs as the number of votes

that have been mixed and decrypted. The format of each proof is the following:

"voteSetId":{

 "ballotBoxId":{

 “tenantId”,

 “electionEventId”,

 “id”

 },

 “index”

}

"previousVotes":[{

"gamma",

"phis":[…]

 },{…}

}

"shuffledVotes":[{

"gamma",

"phis":[…]

 },{…}

}

"votes":[{

"gamma",

"phis":[…]

 },{…}

}

Scytl sVote

Audit of the process

38

File 36 - zkProof structure file

• The shuffleProof has the following structure:

"zkProof":{

 "q",

 "hash",

 "values":[value1,value2,…]

}

Scytl sVote

Audit of the process

39

File 37 - Shuffle proof structure file

initialMessage → 𝑐𝐴⃗⃗ ⃗
firstAnswer → 𝑐𝐵⃗⃗⃗⃗

secondAnswer:

msgPA → represents the initial message of Product Argument

commitmentPublicB → 𝑐𝑏

iniHPA → Initial message of Hadamard Product Argument

commitmentPublicB → 𝑐𝐵⃗⃗⃗⃗

ansHPA → Answer of Hadamard Product Argument

initial → Initial message of Zero Argument

commitmentPublicA0 → 𝑐𝐴0

commitmentPublicBM → 𝑐𝐵𝑚

commitmentPublicD → 𝑐𝐷⃗⃗⃗⃗

answer → Answer of Zero Argument

exponentsA → 𝑎

exponentsB → 𝑏⃗

exponentR → 𝑟

exponentS → 𝑠

exponentT → 𝑡

iniSVA → represents the initial message of Single Value Product Argument

commitmentPublicD → 𝑐𝑑

commitmentPublicLowDelta → 𝑐𝛿

commitmentPublicHighDelta → 𝑐∆

ansSVA → represents the answer of Single Value Product Argument.

exponentsTildeA → 𝑎̃1, … , 𝑎̃𝑛

exponentsTildeB → 𝑏̃1, … , 𝑏̃𝑛

exponentsTildeR → 𝑟̃

exponentsTildeS → 𝑠̃

iniMEBasic → initial message of multi-exponentiation argument

commitmentPublicA0 → 𝑐𝐴0

commitmentPublicB → {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1

ciphertextsE → {𝐸𝑘}𝑘=0
2𝑚−1

ansMEBasic → answer of multi-exponentiation argument

exponentsA → 𝑎

exponentR → 𝑟

exponentB → 𝑏

exponentS → 𝑠

randomnessTau → 𝜏

Scytl sVote

Audit of the process

40

• The commitmentParameters contains a list of values that are: the encryption parameters

(the first three values) and the generators used for the vector commitments:

File 38 - commitmentParameters.json

• The signature field contains the signature in base64 (signature.contents) and also the

certificate chain (signature.certificateChain) needed to verify that signature in .PEM

format: [Control Component Signing Certificate, Control Component CA Certificate].

 Mixed and Decrypted Ballot Box in 𝐶𝐶𝑀4

The output of the mixing and decryption processes executed in the last Control Component is stored in

the following path:

config/{election_event_id}/ONLINE/electionInformation/ballots/{ballot_id}/b

allotBoxes/{ballot_box_id}/{voteSetID}

• The commitmentParameters.json contains the information specified in File 38. The

commitmentParameters.json.metada contains the file signature and the metadata used

to compute it.

• Each line of the encryptedBallots.csv is one vote 𝐶 with the following structure: 𝛼; 𝛽,

where 𝛼 = 𝑔𝑟 and 𝛽 = 𝑝𝑘𝑟 · 𝑣 according to the ElGamal encryption scheme. This is the input of

the mixing process executed in the node and must be equal to the output of the previous online

node (votes field in File 30). The encryptedBallots.csv.metada contains the file

signature and the metadata used to compute it.

• Each line of the reencryptedBallots.csv file is one vote 𝐶′ with the following structure:

𝛼; 𝛽, where 𝛼 = 𝑔𝑟 and 𝛽 = 𝑝𝑘𝑟 · 𝑣 according to the ElGamal encryption scheme. This is the

output of the mixing process executed in the node. The reencryptedBallots.csv.metada

contains the file signature and the metadata used to compute it.

• The publicKey.json contains the key used by the mixing process to perform the re-

encryption, that is, the Electoral Board public key.

𝑝, 𝑞, 𝑔, 𝐻, 𝐺1, … , 𝐺𝑛

Scytl sVote

Audit of the process

41

File 39 - publicKey.json

• The votes.csv file contains the output of the decryption process. Each line of this file

corresponds to one decrypted vote and contains the product of primes numbers and in case

write-ins are allowed, the encoded write-in text or the number 2 if the write-in has not been used.

The votes.csv.metada contains the file signature and the metadata used to compute it.

File 40 - votes.csv

• The votesWithProof.csv file contains one row per encrypted vote with the following

information in a JSON format: the encrypted vote, the decrypted vote and the decryption proof.

The votesWithProof.csv.metada contains the file signature and the metadata used to

compute it.

{

"publicKey":{

“zpSubgroup”:{

“g”:

“p”:

“q”:

 }

 “elements”:{…}

}

∏𝑝𝑙

𝑛

𝑙=1

; {𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑊𝐼 𝑜𝑟 2}, … , {𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑊𝐼 𝑜𝑟 2}

Scytl sVote

Audit of the process

42

File 41 - votesWithProof.csv

• The proofs.json file contains the mixing proof in the format specified in File 37 and the

proofs.json.metadata contains its signature and the metadata used to compute it.

In addition to all the information mentioned previously, the decryption process outputs two more files

that are stored in the Ballot Box folder (see Figure 12):

• The decompressedVotes file contains a list of decrypted and factorized voting options (factors

{𝑝𝑙}𝑙=1
𝑛) and, in case write-ins have been used, it also includes the decoded text. Each line

corresponds to one vote and individual factors are separated by “;”.

File 42 - decompressedVotes.csv

 If write-ins are allowed but they have not been used by the voter to vote for an option, the

decompressedVotes.csv.metada contains the file signature and the metadata used to compute it.

• The auditableVotes file contains one line per vote that has experimented some decryption

error.

"[{"

"gamma",

"p",

"q"

},

{"

"phi1",

"p",

"q"

},

{…},

{"

"phiM",

"p",

"q"

},

{"…"}]";

[decryptedValue];

"{" "zkProof":{

 "q",

 "hash”,

 "values"

"}}"

 "q",

 "hash”,

 "values"

 },

}

𝑝1; 𝑝2; … ; 𝑝𝑛; 𝑝𝑊𝐼1; 𝑝𝑊𝐼2; … ; 𝑝𝑊𝐼1#𝑤𝑟𝑖𝑡𝑒𝑖𝑛1; 𝑝𝑊𝐼2#𝑤𝑟𝑖𝑡𝑒𝑖𝑛2; …

Scytl sVote

Audit of the process

43

File 43 - auditableVotes.csv

The errors can be one of the following:

• The auditableVotes.csv.metada contains the file signature and the information to validate

it.

3 File signature verification

Files produces by the system components are signed to guarantee their security during the process.

These signatures prevent file substitution and file content modifications.

 Validate JSON files signature

There are three different ways to sign a JSON file and store its signature:

3.1.1 Use a metadata JSON file with the same .json file name plus .metadata

Given a JSON file, a .json.metadata file is created with the information used to compute the

signature:

File 44 - metadata JSON file

Each element in the "signed" array contains the name and the value of the element included in the

signature.

The simple approach to verify the file signature is to get the signature field from the metadata

document and decode it into an array of bytes. Next, concatenate the original stream with the values of

the fields in the signed array. Finally, verify the signature is valid against the stream.

More precisely, to verify the signature of the original resource you must use the metadata document

and follow this process:

timestamp;decryptionErrors;decryptedValue;factorization

RULE_VALIDATION

DUPLICATED_FACTOR

NON_FACTORIZABLE_REMAINDER

WRITE_IN_CONTENT_VIOLATION

"version":"1.0"

"signed":[array of values used in the signature generation]

{

 "field":[the name of the field included in the signature],

 "value": [the value of the field included in the signature]

}

},

"alg":#{algorithm, padding and salt information}

"signature":#{base64 encoded string of the signature}

Scytl sVote

Audit of the process

44

1) Read and convert to an array of bytes the signature field.

2) Read the signed array and check that if it is empty.

3) If the signed array is empty:

• Validate that the signature verifies, using the bytes of the signature read in step 1, the

original resource and the public key of the signer.

4) If the signed array is not empty, for each field:

a) Concatenate the string representation of each field.

b) Convert the string into an array of bytes.

c) Concatenate the original resource (either as an array of bytes or java stream) with the

byte array (of Java byte stream created from it) from step 4b.

5) Validate that the signature verifies, using the bytes of the signature read in step 1, the

concatenated byte array (or Java stream) from step 4c and the algorithm specified in alg.

Note: If no signature algorithm is provided, the default is “SHA256withRSAandMGF1” from Sun

or Bouncy Castle provider.

3.1.2 Use a file with the same .JSON file name plus .sign

Given a JSON file, a JWT1 token is built from its contents, and then stored as a JSON object with one

property, .signature, containing the JWT token. Each file is named as its source with .sign

appended to it name. The signature verification involves parsing the JWT token back into a JSON object

and comparing the fields with those in the original file.

1 See IETF’s RFC 7515

public boolean verifySignature(final PublicKey publicKey, final InputStream metadataStream,

 final InputStream sourceStream) throws GeneralCryptoLibException {

try (JsonReader jsonReader = Json.createReader(metadataStream)) {

 final JsonObject metadataSignatureJson = jsonReader.readObject();

 final SignatureMetadata signatureMetadata =

SignatureMetadata.fromJsonObject(metadataSignatureJson);

 StringBuilder sb = new StringBuilder();

 signatureMetadata.getSignedFields().forEach((k, v) -> sb.append(v));

 String fieldsString = sb.toString();

 final byte[] bytes = fieldsString.getBytes(StandardCharsets.UTF_8);

 InputStream bs = new ByteArrayInputStream(bytes);

 InputStream seq = new SequenceInputStream(sourceStream, bs);

byte[] signatureBytes =Base64.getDecoder().

decode(metadataSignatureJson.getString(SignatureFieldsConstants.SIG_FIELD_SIGNATURE));

 return _verifier.verifySignature(signatureBytes, publicKey, seq);

 }

}

Scytl sVote

Audit of the process

45

The following code is an example of how to verify these kinds of signatures:

3.1.3 Store it in a field of the .JSON file

Given a JSON file whose signature is stored in one of its fields, the following mechanism can be used

to verify the signature:

1) Obtain the signature from the . JSON file.

2) Remove the signature field from the . JSON file.

3) Verify the signature using the same methodology explained in the previous section.

 Validate CSV files signature

There are three different ways to sign a CSV file and store its signature:

3.2.1 Use a metadata JSON file with the same CSV file name plus .metadata

The methodology used to verify the signature of a CSV file using the corresponding metadata file is the

same that explained in section 3.1.1.

3.2.2 Use a file with the same CSV file name plus .sign

The methodology used to verify the signature of a CSV file using the corresponding .sign file is the

following:

1) Read the signature from the .csv.sign file. This value is encoded in base64.

2) Decode the signature.

3) Given the public key (java.security.PublicKey), the signature (byte array) and the CSV

file (InputStream), verify the signature using the algorithms implemented in

java.security.Signature.

3.2.3 Store it in the last line of the CSV file

Given a CSV file whose signature is stored in the last line of it, the methodology proposed to verify the

signature is the following:

1) Read the signature from the last line of the file. This value is encoded in base64.

public <T> T verify(PublicKey publicKey, String signedJSON, Class<T> clazz) {

 @SuppressWarnings("unchecked")

 Map<String, Object> claimMapRecovered =

 (Map<String, Object>) Jwts.parser().setSigningKey(publicKey).parse(signedJSON).getBody();

 final ObjectMapper mapper = new ObjectMapper();

 Object recoveredSignedObject = claimMapRecovered.get("objectToSign");

 return mapper.convertValue(recoveredSignedObject, clazz);

}

Scytl sVote

Audit of the process

46

2) Remove the signature from the file.

3) Decode the signature.

4) Given the public key (java.security.PublicKey), the signature (byte array) and the CSV

file (InputStream), verify the signature using the algorithms implemented in

java.security.Signature

Scytl sVote

Audit of the process

47

4 Configuration validation

The following schema defines the certificate hierarchy of the system configuration and the table below

the figure contains the certificate details.

Figure 14 - System certificate hierarchy

Certificate Common name Organization
Organizational
Unit

Country Key type Key usage

Platform Root
CA

${platformName}
Root CA

Organization Online Voting ES CA keyCertSign,
cRLSign

Tenant CA Tenant ${tenantID}
CA

Organization Online Voting ES CA keyCertSign,
cRLSign

Control
Component
𝑪𝑪𝑹𝒊 CA

${CCRid} CA Organization Online Voting ES CA keyCertSign,
cRLSign

𝑪𝑪𝑹𝒊 Logging
Encryption
Certificate

${CCRid} Log
Encryption

Organization Online Voting ES CA keyCertSign,
cRLSign

𝑪𝑪𝑹𝒊 Logging
Signing
Certificate

${CCRid} Log Signer Organization Online Voting ES CA keyCertSign,
cRLSign

𝑪𝑪𝑹𝒊
Encryption
Certificate

${CCRid}
${platformID}
Encryption

Organization Online Voting ES CA keyCertSign,
cRLSign

Control
Component

𝑪𝑪𝑴𝒋 CA

${CCMid} CA Organization Online Voting ES CA keyCertSign,
cRLSign

Scytl sVote

Audit of the process

48

Certificate Common name Organization
Organizational
Unit

Country Key type Key usage

𝑪𝑪𝑴𝒊 Logging
Encryption
Certificate

${CCMid} Log
Encryption

Organization Online Voting ES CA keyCertSign,
cRLSign

𝑪𝑪𝑴𝒊 Logging
Signing
Certificate

${CCMid} Log Signer Organization Online Voting ES CA keyCertSign,
cRLSign

𝑪𝑪𝑴𝒊
Encryption
Certificate

${CCMid}
${platformID}
Encryption

Organization Online Voting ES CA keyCertSign,
cRLSign

Administration
Board
Certificate

AdministrationBoard
${adminBoardID}

Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Tenant
Authentication
Context
System
Certificate

AU ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant Voting
Workflow
Context
System
Certificate

VW ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant Vote
Verification
Context
System
Certificate

VV ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant Voter
Material
Context
System
Certificate

VM ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant Election
Information
Context
System
Certificate

EI ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant
Certificate
Registry
Context
System
Certificate

CR ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Tenant
Extended
Authentication
Context
System
Certificate

EA ${tenantID}
Encryption

Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Authentication
Context
Logging

AU Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Scytl sVote

Audit of the process

49

Certificate Common name Organization
Organizational
Unit

Country Key type Key usage

Encryption
Certificate

Authentication
Context
Logging
Signing
Certificate

AU Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Voting
Workflow
Context
Logging
Encryption
Certificate

VW Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Voting
Workflow
Context
Logging
Signing
Certificate

VW Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Vote
Verification
Context
Logging
Encryption
Certificate

VV Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Vote
Verification
Context
Logging
Signing
Certificate

VV Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Voter Material
Context
Logging
Encryption
Certificate

VM Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Voter Material
Context
Logging
Signing
Certificate

VM Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Election
Information
Context
Logging
Encryption
Certificate

EI Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Election
Information
Context
Logging
Signing
Certificate

EI Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Scytl sVote

Audit of the process

50

Certificate Common name Organization
Organizational
Unit

Country Key type Key usage

Extended
Authentication
Context
Logging
Encryption
Certificate

EI Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Extended
Authentication
Context
Logging
Signing
Certificate

EI Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Certificate
Registry
Context
Logging
Encryption
Certificate

EI Log Encryption Organization Online Voting ES Encryption keyEncipherment,
dataEncipherment

Certificate
Registry
Context
Logging
Signing
Certificate

EI Log Signer Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Table 2 - System certificates details

In addition to the system certificates, the Online Voting system generates certificates related to a specific

Election Event. The following two diagrams show the Election Event Certificate hierarchy and the

Control Components Election Event Certificate hierarchy.

Scytl sVote

Audit of the process

51

Figure 15 - Election Event certificate hierarchy

Certificate Common name Organization
Organizational
Unit

Country
Key
type

Key usage

Election Event
Root CA

Election Event Root CA
${eeid}

Organization Online Voting ES CA keyCertSign,
cRLSign

Services CA Services CA ${eeid} Organization Online Voting ES CA keyCertSign,
cRLSign

Authorities CA Authorities CA ${eeid} Organization Online Voting ES CA keyCertSign,
cRLSign

Credentials CA Credentials CA ${eeid} Organization Online Voting ES CA keyCertSign,
cRLSign

Authentication
Token Signer

AuthTokenSigner
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Ballot Box
Signer

BallotBox ${id} Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Verification
Card Set Issuer

VerificationCardIssuer
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Vote Cast
Return Code
Signer

VoteCastCodeSigner
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Credential ID
signing

Sign ${cid} Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Credential ID
authentication

Auth ${cid} Organization Online Voting ES Sign digitalSignature,
nonrepudiation

Table 3 - Election Event certificates details

Scytl sVote

Audit of the process

52

Figure 16 - Control Components Election Event certificate hierarchy

Certificate
Common
name

Organization
Organizational
Unit

Country
Key
type

Key usage

𝑪𝑪𝑹𝟏 Signing
Certificate

${CCR1id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝑪𝑪𝑹𝟐 Signing
Certificate

${CCR2id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝑪𝑪𝑹𝟑 Signing
Certificate

${CCR3id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝑪𝑪𝑹𝟒 Signing
Certificate

${CCR4id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝑪𝑪𝑴𝟏 Signing
Certificate

${CCM1id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝑪𝑪𝑴𝟐 Signing
Certificate

${CCM2id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

𝐂𝐂𝑴𝟑 Signing
Certificate

${CCM3id}
${eeid}

Organization Online Voting ES Sign digitalSignature,
nonRepudiation

Table 4 - Control Components Election Event certificates details

Scytl sVote

Audit of the process

53

 Certificates validation

To validate the election certificates, the following strategy can be followed:

1) Obtain the certificate to be validated from the corresponding file:

• Platform Root CA (see File 2).

• Tenant CA (see File 3).

• 𝐶𝐶𝑅1 CA, 𝐶𝐶𝑅2 CA, 𝐶𝐶𝑅3 CA, 𝐶𝐶𝑅4 CA, 𝐶𝐶𝑀1 CA, 𝐶𝐶𝑀2 CA, 𝐶𝐶𝑀3 CA (Control

Component data base or see Section 2.4).

• 𝐶𝐶𝑅1 signing certificate, 𝐶𝐶𝑅2 signing certificate, 𝐶𝐶𝑅3 signing certificate, 𝐶𝐶𝑅4

signing certificate, 𝐶𝐶𝑀1 signing certificate, 𝐶𝐶𝑀2 signing certificate, 𝐶𝐶𝑀3 signing

certificate (Control Component data base or see Section 2.4).

• Election Event Root CA, Authorities CA, Services CA, Credentials CA (see File 6

and File 20).

• Authentication Token certificate (see File 6).

• Administration Board certificate (see File 1).

• For each Verification Card Set:

o Vote Cast Return Code Certificate, Verification Card Set Issuer certificate

(see File 15)

• For each Ballot Box:

o Ballot Box signing certificate (see File 22)

All the certificates are in PEM format:

File 45 - certificate in .PEM format

2) Obtain the parent certificate (see the certificates hierarchies at the beginning of the section).

3) Obtain the additional information (detailed in Table 2, Table 3 and Table 4) needed to perform

the validations.

4) Perform the certificate validations specified in section 11.1.9.

-----BEGIN CERTIFICATE-----

MIIDlDCCAnygAwIBAgIUDK2MyRFavMfrVbocJRewzVXOyr0wDQYJKoZIhvcNAQEL

BQAwXzEWMBQGA1UEAwwNVGVuYW50IDEwMCBDQTEWMBQGA1UECwwNT25saW5lIFZv

dGluZzEVMBMGA1UECgwMT3JnYW5pemF0aW9uMQkwBwYDVQQHDAAxCzAJBgNVBAYT

……..

-----END CERTIFICATE-----

Scytl sVote

Audit of the process

54

Voter’s certificates are omitted in this section since their validation is explained in section 8.

 Signatures validation

Configuration files presented in section 2.1 are signed using either the Administration Board Certificate

or the corresponding Control Component Signing Certificate. Depending on which methodology has

been used to sign the file, the signature is verified in a different way as explained in section3.

Validate the following file signatures using the methodology presented in section 3.1.2

• authenticationContextData.json

• authenticationVoterData.json

• electionInformationContents.json

• ballotBox.json

• ballotBoxContextData.json

• electoralAuthority.json

• decryptionKey.json

• verificationCardData.json

• voteVerificationContextData.json

• verificationCardSetData.json

• commitmentParameters.json

Validate the following file signatures using the methodology presented in section 3.1.3:

• ballot.json: before validating the signature of this file, remove the fields “status”, “details”

and “synchronized”.

Validate the following file signatures using the methodology presented in section 3.2.2:

• extendedAuthentication.csv

• credentialData.csv

• voterInformation.csv

• codesMappingTablesContextData.csv

• verificationCardData.csv

• derivedKeys.csv

Scytl sVote

Audit of the process

55

 Control Components keys validation

The Control Components have their own keys to ensure both the privacy and the integrity of several

processes executed during the configuration, voting and counting phases (the details of the generation

and the usage of these keys are given in the protocol specifications document [1]):

• Control Component CA.

• Control Component signing key.

• Control Component Mixing key.

• Control Component Choice Return Code generation key.

• Control Components Choice Return Codes encryption public key.

The public part of these keys and the corresponding certificates can be found in the Control Components

databases but additionally, the Control Component CA certificate is stored in the second element of the

signature.certificateChain array in File 19, File 25, File 26, File 27 and File 30, and the Control

Component Signing Certificate in the first element of signature.certificateChain array of the

same files.

4.3.1 Choice Return Codes encryption key pair

The Choice Return Codes encryption key pair is generated among the Choice Return Codes Control

Components (𝐶𝐶𝑅) during the configuration phase. Each Control Component generates its own

ElGamal Key pair, stores the private part of the key and sends the public part to the Secure Data

Manager that multiplies all of them and finally obtains the Choice Return Codes encryption public key,

included in File 16. In order to validate that the public key has been successfully consolidated:

1) Obtain the Choice Return Codes encryption public key encoded in Base64 from File 16.

2) Decode the key using the method defined in Appendix 11.3. Convert the decoded value to a

BigInteger.

3) Obtain the Control Components Choice Return Codes encryption public key and its signature

from File 16.

4) Decode the Control Components Choice Return Codes encryption public key using the method

defined in in Appendix 11.3.

5) Obtain the Control Components signing certificates from the Control Component databases.

6) Validate the signature of the Control Components Choice Return Codes encryption public key

concatenated with the Verification Card Set ID and the Election Event ID using the Control

Components signing public key.

7) Convert the decoded values to BigIntegers.

Scytl sVote

Audit of the process

56

8) Obtain the encryption parameters from File 4.

9) Multiply the Control Components Choice Return Codes encryption public keys. Do the operation

modulo p.

10) Check that the result corresponds with the Choice Return Codes encryption public key.

4.3.2 Mixing key pair

The Election key is also generated among several entities: the mixing Control Components (𝐶𝐶𝑀) and

the Electoral Board. Each Control Component generates its own ElGamal Key pair, stores the private

part of the key and send the public part to the Secure Data Manager. Once the Electoral Board is

constituted, the Election key (included File 8) is computed by multiplying the Control Components Mixing

public keys and the Electoral Board public key (File 9) to validate that the key has been successfully

consolidated:

1) Obtain the Election public key encoded in Base64 File 8.

2) Decode the key using the method defined in Appendix 11.3. Convert the decoded value to a

BigInteger.

3) Obtain the Electoral Board public key encoded in Base64 File 8.

4) Decode the key using the method defined in Appendix 11.3. Convert the decoded value to a

BigInteger.

5) Obtain the Control Components Mixing public key and its signature from the Control

Components database.

6) Decode the Control Components Mixing public key using the method defined in Appendix 11.3.

7) Obtain the Control Components signing certificates from the Control Components database.

8) Validate the signature of the Control Components Mixing public key concatenated with the

Electoral Authority ID and the Election Event ID using the Control Components signing public

key.

9) Convert the decoded values to BigIntegers.

10) Obtain the encryption parameters from File 4.

11) Multiply the Control Components Mixing public keys and the Electoral Board public key. Do the

operation modulo p.

12) Check that the result corresponds with the Election public key.

Scytl sVote

Audit of the process

57

5 Vote decompression validation

As is has been explained in section 2.5, the decryption process executed in the last Control

Component will output the following files:

• votes.csv (see File 40)

• votesWithProof.csv (see File 41)

• decompressedVotes.csv and decompressedVotes.csv.metadata (see File 42)

• auditableVotes.csv and auditableVotes.csv.metadata (see File 43)

The following validations should be done in order to verify that the individual voting options obtained

after the decompression were those decrypted.

1) Validate the signature of both the decompressedVotes.csv and audtiableVotes.csv

files using the method explained in section 3.2.1 and the corresponding Ballot Box signing

certificate (see File 22).

2) For each decrypted vote in the votes.csv file:

• Take the first value, that is, the product of prime numbers ∏ 𝑝𝑙
𝑛
𝑙=1 and factorize it using

the information contained in the ballot.json (File 21). If the factorization is

successful, check that the prime numbers obtained after it are included in the

decompressedVotes.csv file. On the other hand, if any error happens, check that

the decrypted vote and the corresponding error reason are included in the

auditableVotes.csv file.

• If write-ins are allowed the file should contain, in addition to the product of prime

numbers, as many decrypted values as the number of write-ins. For each of these

decrypted values: if the value is the number 2 it means that the write-in was not used

by the voter to select an option and, consequently, there is no text to be decoded. If

the value is different from 2, the number represents the encoded write-in and should

be decoded in the following way:

o Compute the square root modulo 𝑝.

o Each character of the write-in is encoded using three numbers that represents

its position in the following alphabet (included in the ballot.json):

To avoid the usage of the number 2 in the encoding (remember that this

number is used when the write-in is not selected), the process adds an offset

of 2 to every character position. For example, the character “a” is in position

45, and it will be encoded as 047.

In order to compute the decoding, first of all we need the result of the square

root to be a multiple of 3. In case it is not, add as many 0s as necessary at the

beginning of the value. Then, separate the resulting value in groups of 3

#'(),-

./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ¢ŠšŽ

žŒœŸÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

Scytl sVote

Audit of the process

58

elements and for each one of them search in the alphabet for the

corresponding character. Finally obtain a decoded value with the following

format: 𝑝𝑊𝐼1#𝑤𝑟𝑖𝑡𝑒𝑖𝑛1; 𝑝𝑊𝐼2#𝑤𝑟𝑖𝑡𝑒𝑖𝑛2; …

• If the decoding process is successful, check that the decoded values are included in

the decompressedVotes.csv file and that the primers numbers 𝑝𝑊𝐼1 , 𝑝𝑊𝐼2 , … are

part of the factorization computed in step 0) . On the other hand, if any error

happens, check that the decrypted vote and the corresponding error reason are

included in the auditableVotes.csv file.

3) Run the decryptedCorrectnessRule inside the ballot.json (File 21) over the decrypted

votes after being factorized. Check that the votes for which the rule has failed, are included in

auditableVotes.csv (File 43).

6 Mixing and Decryption

In each of the Control Components the mixing and decryption processes are executed sequentially.

 Validation of the 𝐶𝐶𝑀4 output

Starting from the last Control Component, the following validations should be done in order to audit the

mixing and decryption processes:

1) Validate the signature of the votes.csv, votesWithProof.csv

mencryptedBallots.csv, the reencryptedBallots.csv, the

commitmentParameters.json and the proofs.json using the Administration Board

Certificate (File 1 - {adminBoardID}.pem) and the methodologies explained in sections 3.1.1

and 3.2.1.

2) For each tuple of (encryptedVote, decryptionProof, decryptedVote) in the votesWithProof file

(File 41), call the Decryption Proof verifier with the following inputs:

• Base elements: [𝑔 , 𝐶0]

o 𝑔 is obtained from File 4

o 𝐶0 is the value stored in the gamma field.

• Public input (group elements): [𝑝𝑘1, 𝐶1
′ , 𝑝𝑘2, 𝐶2

′ , … , 𝑝𝑘𝑚, 𝐶𝑚
′]

o [𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑚] is the public key with which the votes are encrypted at the

input of the decryption process, that is, the electoral board public key (File 9

and File 39).

o [𝐶1
′ , 𝐶2

′ , … , 𝐶𝑚
′]: These values are the result of dividing each phi element of the

ciphertext (these values stored in the phi fields) by the corresponding value

in the decryptedValue field.

• Decryption proof

o An exponent: zkProof.hash (c)

Scytl sVote

Audit of the process

59

o An array of exponents: zkProof.values (𝑧1; 𝑧2; … ; 𝑧𝑚)

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers

before using them.

• Additional data: "DecryptionProof”

3) Check that for each of the tuples in the votesWithProof.csv, the values stored in the

decryptedValue field are also included in the votes.csv file.

4) Check that for each of the tuples in the votesWithProof.csv, the encrypted votes stored in

the gamma and phis fields are also included in the reencryptedBallots.csv.

5) Call the Mixing proof verifier with the following inputs:

• Input ciphertexts: list of ciphertexts stored in encryptedBallots.csv (see Section

2.5)

• Output ciphertexts: list of ciphertexts stored in reencryptedBallots.csv (see Section 2.5)

• Encryption parameters: values 𝑝 , 𝑞 and 𝑔 in the commitmentParameters.json

(File 38).

• Commitment parameters: values 𝐻,𝐺1, … , 𝐺𝑛 in the commitmentParameters.json

(File 38).

• Public key: Electoral Board public key elements stored in field elements of File 39.

• Mixing proof: proofs.json. The information included in this file has the same

structure than that presented in File 37.

6) Check that the ciphertexts in the reencryptedBallots.csv are the same ciphertexts

included in the votes field of the previous Control Component output (File 30).

 Validation of the 𝐶𝐶𝑀𝟏, 𝐶𝐶𝑀𝟐 and 𝐶𝐶𝑀𝟑 outputs

As it is explained in section 2.4, after the mixing and decryption are executed in the online Control

Components a JSON file is generated with all the necessary information to validate that both

processes have been executed as expected in each component.

1) Validate the signature of the output:

• Concatenate the following information using the method print of the

java.io.PrintWriter class: voteSetId, votes, voteEncryptionKey,

commitmentParameters, decryptionProofs, shuffledVotes,

shuffleProof, timestamp, previousVotes and

previousEncryptionKey.

• Obtain the signature from the field signature.signatureContents and decode it

base64.

• Obtain the Control Component Signing Certificate from the first element of the array

stored in signature.certificateChain field.

Scytl sVote

Audit of the process

60

• Verify the signature using the methods provided by java.security.Signature

2) For each element in the votes field search the corresponding decryption in the

decryptionProofs field and the corresponding encrypted vote in the shuffledVotes

field. Call the Decryption Proof verifier with the following inputs:

• Base elements: [𝑔 , 𝐶0]

o 𝑔 is obtained from File 4

o 𝐶0 is the value stored in the votes.gamma field.

• Public input (group elements): [𝑝𝑘1, 𝐶1
′ , 𝑝𝑘2, 𝐶2

′ , … , 𝑝𝑘𝑚, 𝐶𝑚
′]

o [𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑚] is the public key corresponding to the private key used to

compute the partial decryption, that is, the Control Component Mixing public

key.

o [𝐶1
′ , 𝐶2

′ , … , 𝐶𝑚
′]: These values are the result of dividing each phi element of the

ciphertext (these values stored in the shuffledVotes.phi fields) by the

corresponding value in the votes.gamma fields.

• Decryption proof

o An exponent: decryptionProofs.zkProof.hash (c)

o An array of exponents: decryptionProofs.zkProof.values

(𝑧1; 𝑧2; … ; 𝑧𝑚)

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers

before using them.

• Additional data: "DecryptionProof”

3) Call the Mixing proof verifier with the following inputs:

• Input ciphertexts: list of ciphertexts stored in the previousVotes field.

• Output ciphertexts: list of ciphertexts stored in the shuffled field.

• Encryption parameters: values 𝑔, 𝑝 and 𝑞 in the encryptionParameters field.

• Commitment parameters: values 𝐻,𝐺1, … , 𝐺𝑛 in the commitmentParameters field.

Notice that the first three values correspond to 𝑝, 𝑞 and 𝑔.

• Public key: public key stored in the previousVoteEncryptionKey field.

• Mixing proof: proof stored in the shuffleProof field.

7 Cleansing validation

The cleansing determines, according to the system defined rules, which are the votes which are going

to pass to the next phase (mixing and decryption). Then it removes all the information from the votes

except for the encrypted voting options, which will be processed in further phases. Specifically,

cleansing ensures that only one vote per Voting Card ID, and only if confirmed (if confirmation is required

Scytl sVote

Audit of the process

61

during the voting phase), is considered in subsequent phases. The cleansing process outputs the

following information:

• successfulVotes.csv (see File 28)

• failedVotes.csv (see File 29)

• Cleansed Ballot Box: as it is explained in section 2.3 the cleansed votes are stored as part

of the first Mixing node output. The signature of these votes performed by the Voting Server

is stored in the first Mixing Control Component logs, in an entry that has the following fields:

o Log Event: Vote set signature successfully validated

o Timestamp

o Vote set signature (encoded Base64)

o Control Component ID

o Vote Encryption key (encoded Base64)

o Votes (Cleansed votes encoded Base64)

o Vote set ID

The following operations are proposed to audit the cleansing process, that is, to check that the output

files of the process contain the correct information:

1) Verify the signatures of the successfulVotes.csv and failedVotes.csv files using the

methodology proposed in section 3.2.3 and the Ballot Box signing certificate (File 22)

2) Verify the signature of the cleansed ballot box, that is, the signature of the first mixing node

input, in the following way:

• Decode base64 the values stored in the fields Vote set signature, Vote encryption key

and Votes.

• Concatenate the following information using the method print of the

java.io.PrintWriter class: voteSetId, votes, voteEncryptionKey and

timestamp

• Obtain the Election Information signing certificate stored in the system keys folder

(Figure 2).

• Verify the signature using the methods provided by java.security.Signature

3) Look up the field numVotesPerVotingCard inside the

electionInformationContents.json (File 20) to know how many votes are allowed per

Voting Card ID. For each vote in the downloaded Ballot Box file, check if for its Voting Card ID,

there are more votes in the Ballot Box that the number defined in numVotesPerVotingCard.

Scytl sVote

Audit of the process

62

If this validation is not successful, the failedVotes.csv file should contain an entry with that

Voting Card ID, the receipt corresponding to the vote and the error DUPLICATE VOTE.

4) For each vote in the downloaded Ballot Box (see File 24), check if the field corresponding to

the Vote Cast Return Code is empty or not. If it is empty, this vote is not considered in the next

phase and the failedVotes.csv file should contain an entry with that Voting Card ID, the

receipt corresponding to the vote and the error NOT CONFIRMED.

5) Check that the downloaded Ballot Box contains exactly the votes in successfulVotes.csv and

failedVotes.csv.

8 Ballot Box Validation

The following operations are proposed to validate the Ballot Box, that is, to verify the integrity and

correctness of each Ballot Box and of the votes contained inside. The validations below should be done

per each of the votes inside the downloaded Ballot Box, that have the structure explained in section 2.2.

 Credential ID signing certificate validation

Validate the certificate using the following steps:

1) Obtain the Credential ID signing certificate (vote.certificate) that is in .PEM format (File

45).

2) Obtain the parent certificates: [Credentials CA, Election Event Root CA] (File 6 and File 20).

3) Obtain the additional information (detailed in Table 2, Table 3 and Table 4) needed to perform

the validations.

4) Perform the certificate validations specified in Appendix 11.1.9.

 Signature validations

To verify the signatures, the java.security.Signature class is used. As it is explained in the

documentation2 three phases are required to perform the verification.

We explain in this section how to verify the signatures of the following elements:

• Vote Cast Return Code

• Authentication token

• Encrypted vote

• Receipt

• Verification Card Public Key

2 https://docs.oracle.com/javase/7/docs/api/java/security/Signature.html

Scytl sVote

Audit of the process

63

8.2.1 Vote Cast Return Code

1) Obtain the Vote Cast Return Code signature (VoteCastCodeSignature) and decode it using

a Base64 decoder (Appendix 11.3). The result will be a byte array.

2) Obtain the Vote Cast Return Code (VoteCastCode) and the Verification Card ID

(voterInformation.verificationCardId) and encode them as a byte array using the

Charset UTF_8. These values are the signed information.

3) Obtain the Vote Cast Return Code certificate in .PEM format from File 15. The field is named

voteCastCodeSignerCert. Recover the public key from it.

4) Verify the signature using the methods provided by java.security.Signature.

8.2.2 Authentication token

1) Obtain the authentication token signature from the authenticationToken field in the Ballot

Box and decode it using a Base64 decoder (Appendix 11.3). The result will be a byte array.

2) Concatenate the following values (see an example on how to do it in Appendix 11.4), all inside

the authenticationToken field.

• Authentication token ID (id)

• Tenant ID (voterInformation.tenantId)

• Election Event ID (voterInformation.electionEventId)

• Voting Card ID (voterInformation.votingCardId)

• Ballot ID (voterInformation.ballotId)

• Credential ID (voterInformation.credentialId)

• Verification Card ID (voterInformation.verificationCardId)

• Ballot Box ID (voterInformation.ballotBoxId)

• Verification Card set ID (voterInformation.verificationCardSetId)

• Voting Card Set ID (voterInformation.votingCardSetId)

3) Convert the result to a byte array. This is the signed information.

4) Obtain the Authentication token certificate in .PEM format from File 6. The field is named

authenticationTokenSignerCert. Recover the public key from it.

5) Verify the signature using the methods provided by java.security.Signature

Scytl sVote

Audit of the process

64

8.2.3 Encrypted vote

1) Obtain the Vote signature (vote.signature) and decode it using a Base64 decoder

(Appendix 11.3). The result will be a byte array.

2) Concatenate in a string array (Appendix 11.4) the following values, all inside the vote field.

• Encrypted options (vote.encryptedOptions)

• Encrypted write-ins (vote.encryptedWriteIns)

• Correctness IDs (vote.correctnessIds)

• Verification card public key signature (vote.verificationCardPKSignature)

• Authentication token signature (vote.authenticationTokenSignature)

• Schnorr proof (vote.schnorrProof)

• Voting Card ID (vote.votingCardId)

• Election Event ID (vote.electionEventId)

3) Convert the result to a byte array. This is the signed information.

4) Obtain the Credential ID signing certificate in PEM format from File 45 (vote.certificate).

Recover the public key from it.

5) Verify the signature using the methods provided by java.security.Signature

8.2.4 Receipt

1) Obtain the Receipt signature (receipt.signature) and decode it using a Base64 decoder

(Appendix 11.3). The result will be a byte array.

2) Obtain the Receipt value (receipt.receipt) and encode it as a byte array (Appendix 11.3).

This is the signed information.

3) Obtain the Ballot Box certificate in PEM format from File 22. The field is named

ballotBoxCert. Recover the public key from it.

4) Verify the signature using the methods provided by java.security.Signature

8.2.5 Verification Card Public Key

1) Obtain the Verification Card Public key signature (verificationCardPKSignature) and

decode it using a Base64 decoder (Appendix 11.3). The result will be a byte array.

2) Obtain the Verification Card Public key (verificationCardPublicKey) and decode it using

a Base64 decoder (Appendix 11.3), the election event Id (electionEventId) and the

verification card ID (verificationCardId) from the vote structure. This is the signed

information.

Scytl sVote

Audit of the process

65

3) Obtain the Verification Card Issuer certificate in .PEM format from File 15. Recover the public

key from it.

4) Verify the signature using the methods provided by java.security.Signature.

 Proofs validations

The proofs to be validated are:

• Schnorr proof

• Exponentiation proof validator

• Plaintext equality proof validator

8.3.1 Schnorr proof

The Schnorr proof is generated in the voting client after the voting options are encrypted, using the

Schnorr proof generator. To verify the proof, call the Schnorr proof verifier with the following inputs:

• Base elements (group elements): encryptionParameters.g (File 4)

• Public input (group elements): first element of encryptedOptions field

• Schnorr proof: vote.schnorrProof

o An exponent: schnorrProof.zkProof.hash (c)

o An array of exponents: schnorrProof.zkProof.values (z)

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers.

• Additional data: "SchnorrProof:VoterID="+_voterID + "ElectionEventID="+

_electionEventID" The value of the voter ID is obtained from vote.votingCardId and

the value of the election event ID from vote.electionEventId

8.3.2 Exponentiation proof validator

The Exponentiation proof is generated in the voting client after the voting options and the partial Choice

Return Codes are encrypted, using the Exponentiation proof generator. To verify the proof, call the

Exponentiation proof verifier with the following input:

• Base elements: [encryptionParameters.g, vote.encryptedOptions]

• Public input (exponentiated elements):[vote.verificationCardPublicKey

,vote.cipherTextExponentiations]

• Exponentiation proof: vote.exponentiationProof

o An exponent: exponentiationProof.zkProof.hash (c)

o An array of exponents: exponentiationProof.zkProof.values (z)

Scytl sVote

Audit of the process

66

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers.

• Additional data: "ExponentiationProof”

8.3.3 Plaintext equality proof validator

The Plaintext equality proof is generated in the voting client after the voting options and the partial

Choice Return Codes are encrypted, using the Plaintext equality proof generator. To verify the proof,

call the Plaintext equality proof verifier with the following input:

• Base elements (group elements): [𝑔, 𝑝𝑘𝐸𝐿,
1

∏ 𝑝𝑘𝑅𝐶𝑖
𝑡
𝑖=1

]

o Generator: encryptionParameters.g (File 4)

o First element of the election public key: publicKey (File 8)

o The compression of the Choice Return Codes encryption public key elements,

inverted: choicesCodesEncryptionPublicKeyBase64 (File 15).

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers

• Public input (group elements): [𝐶0
′ , 𝐷0,

𝐶1
′

𝐷1
′]

o 𝐶0
′ is the first element of vote.cipherTextExponentiations.

o 𝐶1
′ is the second element of vote.cipherTextExponentiations

o 𝐷0
 is the first element of the encryptedPartialChoiceCodes.

o 𝐷1
′ is the compression of the encrypted partial Choice Return Codes elements from

the second to the last one.

The encryptedPartialChoiceCodes values should be decoded Base64 (Appendix

11.3) and converted to BigIntegers.

• Plaintext equality proof: vote.plaintextEqualityProof

o An exponent: plaintextEqualityProof.zkProof.hash (c)

o An array of exponents: plaintextEqualityProof.zkProof.values (𝑧1, 𝑧2)

These values should be decoded Base64 (Appendix 11.3) and converted to BigIntegers

• Additional data: "PlaintextEqualityProof”.

 Vote validations

The vote validations performed are

• Vote hash validation

• Vote format

Scytl sVote

Audit of the process

67

• Vote matches signing certificate

8.4.1 Vote hash validation

1) Obtain from the vote structure the signature (vote.signature), the Verification Card public

key signature (vote.verificationCardPKSignature), the Election Event ID

(vote.electionEventId) and the Voting Card ID (vote.votingCardId). From the

authentication token obtain the signature (authenticationToken.signature). Decode this

values Base64 in case it is necessary (Appendix 11.3)

2) Concatenate all this information (Appendix 11.4)

3) We propose to compute the hash of the resulting byte array using the

java.security.MessageDigest3 class. The algorithm used is SHA_256.

4) Once the hash is obtained, encode the result using a Base64 encoding (Appendix 11.3) and

construct a new string with it using the charset UTF_8.

5) Compare this value with the receipt value within the receipt structure (receipt.receipt)

8.4.2 Vote format

This validation is performed to check if the encrypted options, the encrypted write-ins and the encrypted

partial Choice Return Codes have the expected number of elements and if these elements are group

members.

1) Retrieve the encryption parameters from File 4.

2) Obtain the encrypted options from the vote structure: vote.encryptedOptions

a) Split the encrypted options using as a separator the character “;” and check that there are

2 elements.

b) For each one of the elements obtained check that the value is between 1 and p-1 and that

the result of the operation: 𝑣𝑎𝑙𝑢𝑒𝑞 (𝑚𝑜𝑑 𝑞) is equal to 1.

3) Obtain the encrypted partial Choice Return Codes from the vote structure:

vote.encryptedPartialChoiceCodes

a) Obtain the correctness IDs from the vote structure: vote.correctnessIds

b) Split the encrypted partial Choice Return Codes using as a separator the character “;” and

check that there as many elements as the number of correctness IDs minus 1.

c) For each one of the elements obtained check that the value is between 1 and p-1 and that

the result of the operation: 𝑣𝑎𝑙𝑢𝑒𝑞 (𝑚𝑜𝑑 𝑞) is equal to 1.

3 https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html

Scytl sVote

Audit of the process

68

4) Obtain the encrypted write ins from the vote structure: vote.encryptedWriteIns

a) For each one of the elements obtained check that the value is between 1 and p-1 and that

the result of the operation: 𝑣𝑎𝑙𝑢𝑒𝑞 (𝑚𝑜𝑑 𝑞) is equal to 1.

b) Given the information contained in the ballot regarding the maximum number of write-ins

allowed per contest, check that number of encrypted write-ins is correct.

8.4.3 Vote matches signing certificate

Check that the credentialID within the vote structure is contained in the CredentialID signing certificate.

 Codes Mapping Table validation

From the information stored in the Ballot Box and in the Control Components secure logs it can be

validated that both the encrypted partial choice codes and the confirmation message have a valid

entry in the Codes Mapping Table.

In order to perform these validations, the following steps can be followed for each Verification Card ID:

1) For each Control Component obtain from File 25 the values stored in the variable

exponentiatedPartialCodeElement. The result will be four list of elements corresponding

to the exponentiation computed by each Control Component over the encrypted partial choice

codes:

𝐶𝐶𝑅1 ∶ 𝐸2
𝑘𝑖𝑑

1
= (𝑔𝑟′

, (𝑝𝑘𝐶𝐶𝑅
(1)

)
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

𝑘𝑖𝑑
1

𝐶𝐶𝑅2 ∶ 𝐸2
𝑘𝑖𝑑

2
= (𝑔𝑟′

, (𝑝𝑘𝐶𝐶𝑅
(1)

)
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

𝑘𝑖𝑑
2

𝐶𝐶𝑅3 ∶ 𝐸2
𝑘𝑖𝑑

3
= (𝑔𝑟′

, (𝑝𝑘𝐶𝐶𝑅
(1)

)
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

𝑘𝑖𝑑
3

𝐶𝐶𝑅4 ∶ 𝐸2
𝑘𝑖𝑑

4
= (𝑔𝑟′

, (𝑝𝑘𝐶𝐶𝑅
(1)

)
𝑟′

· 𝑝𝐶𝐶1
𝑖𝑑 , … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
𝑟′

· 𝑝𝐶𝐶𝜓
𝑖𝑑)

𝑘𝑖𝑑
4

These values are also available in the field #pc_comp of the Control Component log whose

corresponding log event is “Partial code successfully computed”.

2) Multiply the ciphertexts and obtain the encrypted pre-Choice Return Codes.

∏𝐸2
𝑘𝑖𝑑

𝑗
4

𝑗=1

= (𝑔r′· 𝑘̂, (𝑝𝑘𝐶𝐶𝑅
(1)

)
r′· 𝑘̂

· 𝑝1
𝑘, … , (𝑝𝑘𝐶𝐶𝑅

(𝜓)
)
r′· 𝑘̂

· 𝑝𝜓
𝑘)

where 𝑘̂ = ∑ 𝑘𝑖𝑑
𝑗4

𝑗=1 and 𝑘 = 𝑘𝑖𝑑 · 𝑘̂.

3) From File 26 and for each Control Component obtain the values stored in the variable

decryptionContributionResult. The result will be four lists of elements corresponding

to the partial decryptions computed by each Control Component over the encrypted pre-

Choice Return Codes. More concretely, each element of these lists is the gamma value of the

Scytl sVote

Audit of the process

69

previous ciphertext (𝑔r′· 𝑘̂), exponentiated to the corresponding Control Component Choice

Return Codes Encryption private key element:

𝐶𝐶𝑅1 ∶ 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅1

(1)
· 𝑘̂·

, … , 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅1

(𝜓)
· 𝑘̂

𝐶𝐶𝑅2 ∶ 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅2

(1)
· 𝑘̂·

, … , 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅2

(𝜓)
· 𝑘̂

𝐶𝐶𝑅3 ∶ 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅3

(1)
· 𝑘̂·

, … , 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅3

(𝜓)
· 𝑘̂

𝐶𝐶𝑅4 ∶ 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅4

(1)
· 𝑘̂·

, … , 𝑔
𝑟′·𝑠𝑘𝐶𝐶𝑅4

(𝜓)
· 𝑘̂

These values are also available in the field #pd_cc of the Control Component log whose

corresponding log event is “Partial decryption successfully computed”.

4) Multiply the partial decryptions and obtain a list of gammas exponentiated to the sum of

Control Component Choice Return Codes Encryption private keys:

(𝑔𝑟′·𝑠𝑘𝐶𝐶𝑅
(1)

· 𝑘̂, … , 𝑔𝑟′·𝑠𝑘𝐶𝐶𝑅
(𝜓)

· 𝑘̂)

5) Negate each element of the list computed in the previous step and multiply them for the

corresponding element of the encrypted pre-Choice Return Codes. Obtain the pre-Choice

Return Codes:

𝑝𝐶1
𝑖𝑑 = 𝑣1

𝑘 = 𝑔−𝑟′·𝑠𝑘𝐶𝐶𝑅
(1)

· 𝑘̂ · (𝑝𝑘𝐶𝐶𝑅
(1)

)
r′· 𝑘̂

· 𝑣1
𝑘

⋮

𝑝𝐶𝜓
𝑖𝑑 = 𝑣𝜓

𝑘 = 𝑔−𝑟′·𝑠𝑘𝐶𝐶𝑅
(𝜓)

· 𝑘̂ · (𝑝𝑘𝐶𝐶𝑅
(𝜓)

)
r′· 𝑘̂

· 𝑣𝜓
𝑘

6) Obtain the correctness IDs from the field correctnessIds in File 24. This is an array that

contains as many arrays as the number of pre-Choice Return Codes.

7) For each of the pre-Choice Return Codes obtain the corresponding correctness IDs and

concatenate them with the Verification Card ID (𝑣𝑐𝑖𝑑), the Election Event ID in the following way:

𝑣𝑖
𝑘||𝑉𝐶𝑖𝑑||𝐸𝐸𝐼𝐷||{𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}

Compute a hash of the result.

8) Check if the result of the hash computed in the previous step is a valid entry of the mapping

table.

9) For each Control Component obtain from File 27 the values stored in the variable

exponentiatedPartialCodeElement. The result will be four elements corresponding to

the exponentiation computed by each Control Component over the hash of the Confirmation

Message:

𝐶𝐶𝑅1 ∶ (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
1

𝐶𝐶𝑅2 ∶ (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
2

𝐶𝐶𝑅3 ∶ (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
3

Scytl sVote

Audit of the process

70

𝐶𝐶𝑅4 ∶ (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
4

These values are also available in the field #pc_comp of the Control Component log whose

corresponding log event is “Partial code successfully computed”.

10) Multiply the exponentiations and obtain the pre-vote cast return code.

∏(𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐𝑖𝑑
𝑗

4

𝑗=1

= (𝐻𝑎𝑠ℎ(𝐶𝑀𝑖𝑑)2)𝑘𝑐̂

where 𝑘𝑐̂ = ∑ 𝑘𝑐𝑖𝑑
𝑗4

𝑗=1 .

11) Concatenate the pre-vote cast return code with the Verification Card ID (𝑣𝑐𝑖𝑑), the Election

Event ID in the following way:

𝑝𝑉𝐶𝐶𝑖𝑑||𝑉𝐶𝑖𝑑||𝐸𝐸𝐼𝐷

Compute a hash of the result.

12) Check if the result of the hash computed in the previous step is a valid entry of the mapping

table.

 Consistent IDs validation

Check that the following tuples of IDs are consistent:

• (TenantID, vote.tenantId,

vote.authenticationToken.voterInformation.tenantId,

authenticationToken.voterInformation.tenantId)

• (ElectionEventId, vote.electionEventId,

vote.authenticationToken.voterInformation.electionEventId,

authenticationToken.voterInformation.electionEventId)

• (VotingCardId, vote.votingCardId,

vote.authenticationToken.voterInformation.votingCardId,

authenticationToken.voterInformation.votingCardId)

• (BallotId, vote.ballotId,

vote.authenticationToken.voterInformation.ballotId,

authenticationToken.voterInformation.ballotId)

• (BallotBoxId, vote.ballotBoxId,

vote.authenticationToken.voterInformation.ballotBoxId,

authenticationToken.voterInformation.ballotBoxId)

• (vote.credentialId,

vote.authenticationToken.voterInformation.credentialId,

authenticationToken.voterInformation.credentialId)

Scytl sVote

Audit of the process

71

 Voter information validation

Check that the voter information inside the authentication token matches one of the entries in File 12.

 Authentication token expiration time validation

To validate if the authentication token was expired when the vote was cast, the following operations are

done:

1) Retrieve the start date and the end date from the Ballot Box (File 22) corresponding to that voter

(ballotBoxId) . Both are date-time values with a time-zone in the ISO-8601 calendar system.

They are represented using the class ZonedDateTime of the java API java.time. Once they

are obtained, they are formatted using the ISO-like date-time formatter that formats or parses a

date-time with the offset and zone if available with the time-zone offset for UTC

(DateTimeFormatter.ISO_DATE_TIME.withZone(ZoneOffset.UTC))

2) Obtain the authentication token timestamp from the authenticationToken field

(authenticationToken.timestamp) and convert it to a ZonedDateTime object.

3) Check that the authentication token timestamp is not before the start date neither after the

election end date.

 Control Components Validation

During the voting phase, Control Components generate several proofs to demonstrate that they have

used the secret values they committed to during the configuration phase. As it has been explained in

section 2.2, each vote in the downloaded Ballot Box contains these proofs, the signatures and also the

information needed to verify the proofs in the fields ChoiceCodesComputations and

VoteCastCodeComputations (see section 2.2).

For each vote and for each Control Component the following validations should be done:

• Validate encrypted partial Choice Return Codes exponentiation using the information from File

25:

o Verify the exponentiation proof using the Exponentiation proof verifier with the

following inputs:

▪ Base elements: [generator (from File 4), list of partialCodeElement]

(notice that this list of partialCodeElement must be equal to the

ciphertext stored in vote.encryptedPartialChoiceCodes).

▪ Public input (exponentiated elements): [choiceCodesDerivedKeyJson,

exponentiatedPartialCodeElement]

▪ Exponentiation proof: exponentiationProofJson

• An exponent: exponentiationProofJson.zkProof.hash

Scytl sVote

Audit of the process

72

• An array of exponents:

exponentiationProofJson.zkProof.values

▪ Additional data: "ExponentiationProof”

o Concatenate the values in the primeToComputedPrime, the

exponentiationProofJson and the choiceCodesDerivedKeyJson and verify

the signature (signature.signatureContents) of the result using the

corresponding Control Component signing public key stored in the first element of the

array signature.certificateChain.

• Validate pre-Choice Return Codes partial decryption using the information from File 26:

o Before validating the exponentiation, the proof does the following computations:

▪ Multiply the Control Components contributions stored in the

partialCodeElement field in File 25 an obtain a unique ciphertext

corresponding to the encryption of the pre-Choice Return Codes.

▪ Multiply the elements of the public key stored in the publicKeyJson and

obtain a compressed public key.

▪ Multiply the elements stored in the decryptionContributionResult field.

▪ Additional data: "ExponentiationProof”

o Verify the exponentiation proof using the Exponentiation proof verifier with the

following inputs:

▪ Base elements: [generator (from File 4), gamma element of the ciphertext

corresponding to the encryption of the pre-Choice Return Codes]

▪ Public input (exponentiated elements): [compressed public key, compressed

decryption contribution]

▪ Exponentiation proof: exponentiationProofJson

• An exponent: exponentiationProofJson.zkProof.hash

• An array of exponents:

exponentiationProofJson.zkProof.values

▪ Additional data: "ExponentiationProof”

o Concatenate the values in the decryptionContributionResult, the

exponentiationProofJson and the publicKeyJson and verify the signature

(signature.signatureContents) of the result using the corresponding Control

Component signing public key stored in the first element of the array

signature.certificateChain.

Scytl sVote

Audit of the process

73

• Validate confirmation message exponentiation using the information from File 27:

o Verify the exponentiation proof using the Exponentiation proof verifier with the

following inputs:

o Base elements: [generator (from File 4), list of partialCodeElement].

o Public input (exponentiated elements): [castCodeDerivedKeyJson,

exponentiatedPartialCodeElement]

o Exponentiation proof: exponentiationProofJson

• An exponent: exponentiationProofJson.zkProof.hash

• An array of exponents:

exponentiationProofJson.zkProof.values

▪ Additional data: "ExponentiationProof”

o Concatenate the values in the primeToComputedPrime, the

exponentiationProofJson and the castCodeDerivedKeyJson and verify the

signature (signature.signatureContents) of the result using the corresponding

Control Component signing public key stored in the first element of the array

signature.certificateChain.

 Secure Logs validation

Secure Logger produces immutable logs which are protected by means of cryptographic mechanisms,

ensuring that nobody can manipulate the entries stored in the log without being detected.

The information stored in the log could be used to recognize any inconsistency in the votes cast and

recorded in the Ballot Box. The validation of the immutable logs can be done either through features

implemented in the Secure Logger or through a command line tool.

The clear text session key recorded in each checkpoint entry allows independent auditors to verify the

HMAC chain from the previous block. The auditor can furthermore validate the integrity of the log by

verifying the digital signatures.

All the components in the online voting system register their actions in secure logs and the secure logger

keys of each one of them are stored in their corresponding databases.

In order to validate that all the votes and confirmations in the downloaded Ballot Box (File 24) have

been processed by the Control Components and the voting server, access to the Election Information

Context’s logs and to the Control Components’ logs and perform the following validations:

Using the Election Information Context’s logs:

• For each vote in the downloaded ballot box check that there is an entry in the logs that contains

the following information regarding the storage of the vote:

Scytl sVote

Audit of the process

74

o Authentication token hash computed as it is shown below:

o Voting card ID

o Election event ID

o Ballot box ID

o Vote hash computed as shown below:

o Receipt value

o The message “Vote and receipt correctly stored”

• For each confirmed vote in the downloaded Ballot Box check that there is an entry in the logs

that contains the following information regarding the storage of the confirmation of the vote:

o The message “Vote Cast Return Code stored”

o Voting Card ID

o Election Event ID

• Check that all the votes registered in the logs exist in the Ballot Box, that is, check that votes

have not been deleted from the Ballot Box after they have been stored or/and confirmed.

Using the Control Components’ logs:

• For each vote in the downloaded Ballot Box check that there is an entry in the logs with the

following information after the Control Components have validated the vote proofs:

o The message “Successful vote validation”

o Voting Card ID

o Election Event ID

String hashBytesBase64 =

Base64.encodeBase64String(primitivesService.getHash(

inputDataFormatterService.concatenate(id, tenantId, electionEventId,

votingCardId, ballotId, credentialId, verificationCardId,

ballotBoxId, verificationCardSetId, votingCardSetId, timestamp,

signature)));

byte[] hashBytes = primitivesService.getHash(inputDataFormatterService.

 concatenate(vote.getFieldsAsStringArray()));

return Base64.getEncoder().encodeToString(hashBytes);

public String[] getFieldsAsStringArray() {

String[] result = {encryptedOptions, encryptedWriteIns,

correctnessIds, verificationCardPKSignature,

authenticationTokenSignature, schnorrProof, votingCardId,

electionEventId };

return result;

}

Scytl sVote

Audit of the process

75

o Hash of the Authentication Token

o Hash of the vote

o Encrypted options

o Encrypted Write Ins

o Correctness Ids

o Verification Card public key signature

o Schnorr proof

o Vote signature

o Control Component ID

o Validate the vote signature as it is explained in section 8.2.3

• For each vote in the downloaded Ballot Box check that there is an entry in the logs with the

following information after the partial Choice Return Codes are computed:

o The message “Partial code successfully computed”

o Verification Card ID

o Election Event ID

o Encrypted partial Choice Return Codes

o Exponentiated encrypted partial Choice Return Codes

o Control Component ID

• For each vote in the downloaded Ballot Box check that there is an entry in the logs with following

information after partial Choice Return Codes have been partially decrypted:

o The message "Partial decryption successfully computed"

o Verification Card ID

o Gamma element of the exponentiated encrypted partial Choice Return Codes

o Exponentiated gamma element

o Control Component ID

• For each confirmed vote in the downloaded Ballot Box check that there is an entry in the logs

with the following information after the confirmation has been validated:

o The message “Confirmation Message logging”

o Voting Card ID

o Election Event ID

Scytl sVote

Audit of the process

76

o Authentication Token signature

o Confirmation Message

o Confirmation Message signature

o Control Component ID

Validate the confirmation message signature concatenating the confirmation message, the

authentication token signature, the voting card id and the election event id and using the Credential ID

signing certificate.

• For each confirmed vote in the downloaded Ballot Box check that there is an entry in the logs

with the following information after the confirmation message is exponentiated:

o The message “Partial code successfully computed”

o Verification Card ID

o Election Event ID

o Confirmation Message

o Exponentiated Confirmation Message

o Control Component ID

• Check that all the votes registered in the logs exist in the Ballot Box, that is, check that votes

have not been deleted from the Ballot Box after they have been stored or/and confirmed.

Scytl sVote

Audit of the process

77

9 Authentication Validation

To validate that the votes in the Ballot Box have been cast by authenticated voters, take the downloaded

Ballot Box (File 24) and for each vote retrieve the authentication token:

Take also the Authentication Context Secure logs and look for a log that contains the following

information:

• Voting Card ID and Election Event ID included in the voter information inside the authentication

token.

• The authentication token ID.

• The message “Successful authentication token generation”.

• The hash of the authentication token in base64:

o Concatenate the authentication token ID, the tenant ID, the election event ID, the voting

card ID, the ballot ID, the credential ID, the verification card ID, the Ballot Box ID, the

verification card set ID, the timestamp and the signature (all fields are in string format).

In Appendix 11.4 there is an example on how to do this concatenation.

o Compute the hash of the concatenated information.

o Encode the result in base64 (Appendix 11.3).

If a register is found in the secure logs, the voter that cast the vote using this token was successfully

authenticated. The validity of this token is checked in section 8.

"authenticationToken":{

 "id",

 "voterInformation":{

 "tenantId",

 "electionEventId",

 "votingCardId",

 "ballotId",

 "credentialId",

 "verificationCardId",

 "ballotBoxId",

 "votingCardSetId",

 "verificationCardSetId"

 },

 "timestamp",

 "signature"

}

Scytl sVote

Audit of the process

78

10 References

[1] R. team, “SPC_sVOTE_RS_Protocol_Control_Components_V5.0,” 2018.

[2] S. Bayer and J. Groth, "Efficient Zero-Knowledge Argument for Correctness of a Shuffle," in

Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Cambridge, UK, 2012.

[3] S. Bayer and J. Groth, “Efficient zero-knowledge argument for correctness of a shuffle,” in Advances

in Cryptology - EUROCRYPT 2012, 2012.

[4] U. Maurer, "Unifying Zero-Knowledge Proofs of Knowledge," in Progress in Cryptology -

AFRICACRYPT 2009: Second International Conference on Cryptology in Africa, Gammarth,

Tunisia, 2009.

[5] NIST. FIPS PUB 180-4. Seure Hash Standard (SHS), August, 2015.

Scytl sVote

Audit of the process

79

11 Appendix

 Cryptographic primitives

11.1.1 Schnorr proof generator

Based in the Schnorr identification algorithm for proving knowledge of a secret exponent.

Input

• Base elements (group elements): [𝑔]

• Exponents: [𝑟]

• Public input (group elements): [𝐶0] = [𝑔𝑟]

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents = 1

o Number of outputs = number of elements of the public input array = 1

o Base elements

o Computation rules [(1,1)]

Operation

1) Commit step:

a) Pick one random exponent 𝑎1 since there is only one element in the array of exponents.

b) Compute (𝐵1) = 𝑃𝐻𝐼(𝑎1) in the following way:

• The computation rules [(1,1)] establish that to generate the output, the first element of

the base elements array should be exponentiated to the first element of the exponents

array: 𝐵1 = 𝑔𝑎1

2) Challenge step: compute the hash of the Phi function output, the public input and the string data

𝑐 = 𝐻𝑎𝑠ℎ(𝐶0‖ 𝐵1‖"𝐷𝑎𝑡𝑎").

3) Answer step: compute 𝑧1 = 𝑎1 + 𝑐 · 𝑟.

Output

• Schnorr Proof (𝑐; 𝑧1).

11.1.2 Schnorr proof verifier

Based in the Schnorr identification algorithm for proving knowledge of a secret exponent.

Input

• Base elements (group elements): [𝑔]

Scytl sVote

Audit of the process

80

• Public input (group elements): [𝐶0] = [𝑔𝑟]

• Schnorr proof: (𝑐; 𝑧1)

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents in the proofs (𝑧1) = 1

o Number of outputs = number of elements of the public input array = 1

o Base elements

o Computation rules [(1,1)]

Operation

1) Check that (𝑐; 𝑧1) are exponents of the mathematical group

2) Check that 𝐶0 is a group element of the mathematical group

3) Compute 𝐷1 = 𝑃𝐻𝐼(𝑧1) in the following way:

• The computation rules [(1,1)] establish that to generate the output, the first element of the

base elements array should be exponentiated to the first element of the exponents array:

𝐷1 = 𝑔𝑧1.

4) Compute 𝐵1 = (𝐶0)
−𝑐 · 𝐷1. Notice that 𝐵1 = (𝑔𝑟)−𝑐 · 𝑔𝑧1 = 𝑔−𝑟𝑐 · 𝑔𝑎1+𝑟𝑐 = 𝑔−𝑟𝑐+𝑎1+𝑟𝑐 = 𝑔𝑎1

5) Compute 𝑐′ = 𝐻𝑎𝑠ℎ(𝐶0‖ 𝐵1‖"𝐷𝑎𝑡𝑎") and check that 𝑐′ = 𝑐

Output

• OK / Not OK

11.1.3 Exponentiation proof generator

Input

• Base elements (group elements): [h1, h2, … , hn]

• Exponents: [sk]

• Public input (group elements): [h1
sk, h2

sk, … , hn
sk]

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents in the proofs (𝑧1) = 1

o Number of outputs = number of elements of the public input array = n

o Base elements

Scytl sVote

Audit of the process

81

o Computation rules [(1,1); (2,1);… ; (𝑛, 1)]

Operation

1) Commit step:

a) Pick one random exponent 𝑎1 since there is only one element in the array of exponents.

b) Compute (𝐵1, 𝐵2, … , 𝐵𝑛) = 𝑃𝐻𝐼(𝑎1) in the following way:

• The computation rules [(1,1); (2,1);… ; (𝑛, 1)] establish that in order to generate the i-th

output, the i-th element of the base elements array should be exponentiated to the first

element of the exponents array: 𝐵𝑖 = ℎ𝑖
𝑎1

2) Challenge step: compute the hash of the Phi function output and the public input 𝑐 =

𝐻𝑎𝑠ℎ(ℎ1
𝑠𝑘‖…‖ℎ𝑛

𝑠𝑘‖𝐵1‖…‖𝐵𝑛‖"𝐷𝑎𝑡𝑎").

3) Answer step: compute 𝑧1 = 𝑎1 + 𝑐 · 𝑠𝑘.

Output

• Schnorr Proof (𝑐; 𝑧1).

11.1.4 Exponentiation proof verifier

Input

• Base elements (group elements): [h1, h2, … , hn]

• Public input (group elements): [h1
sk, h2

sk, … , hn
sk]

• Exponentiation proof: (𝑐; 𝑧1).

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents in the proofs (𝑧1) = 1

o Number of outputs = number of elements of the public input array = n

o Base elements

o Computation rules [(1,1); (2,1);… ; (𝑛, 1)]

Operation

1) Check that (𝑐; 𝑧1) are exponents of the mathematical group

2) Check that [h1
sk, h2

sk, … , hn
sk] are group elements of the mathematical group

3) Compute (𝐷1, …𝐷𝑛) = 𝑃𝐻𝐼(𝑧1) in the following way:

• The computation rules [(1,1); (2,1);… ; (𝑛, 1)] establish that to generate the i-th output,

the i-th element of the base elements array should be exponentiated to the first element

of the exponents array: 𝐷𝑖 = ℎ𝑖
𝑧1

Scytl sVote

Audit of the process

82

4) Compute 𝐵𝑖 = (ℎ𝑖
𝑠𝑘)

−𝑐
· 𝐷𝑖 . Notice that 𝐵𝑖 = (ℎ𝑖

𝑠𝑘)−𝑐 · ℎ𝑖
𝑧1 = ℎ𝑖

−𝑠𝑘·𝑐 · ℎ𝑖
𝑎1+𝑐·𝑠𝑘

= ℎ𝑖
−𝑠𝑘·𝑐+𝑎1+𝑠𝑘·𝑐

=

ℎ𝑖
𝑎1

5) Compute 𝑐′ = 𝐻𝑎𝑠ℎ(ℎ1
𝑠𝑘‖…‖ℎ𝑛

𝑠𝑘‖𝐵1‖…‖𝐵𝑛‖"𝐷𝑎𝑡𝑎") and check that 𝑐′ = 𝑐

Output

• OK / Not OK

11.1.5 Plaintext equality proof generator

Input

• Base elements (group elements): [𝑔, 𝑝𝑘𝐸𝐵,
1

∏ 𝑝𝑘𝑅𝐶𝑖
𝑡
𝑖=1

]

• Exponents: [𝑟 · 𝑠𝑘𝐼𝐷, 𝑙]

• Public input (group elements): [𝐶0
′ , 𝐷0,

𝐶1
′

𝐷1
′]

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents = 2

o Number of outputs = number of elements of the public input array = 3

o Base elements

o Computation rules [(1,1); (1,2); (2,1), (3,2)]

Operation

1) Commit step:

a) Pick two random exponents 𝑎1, 𝑎2 since there are two elements in the exponent array.

b) Compute (𝐵1, 𝐵2, 𝐵3) = 𝑃𝐻𝐼(𝑎1, 𝑎2) in the following way:

• The computation rules ([(1,1); (1,2); (2,1), (3,2)]) establish that to generate the first

output the first element of the base elements array should be exponentiated to the first

element of the exponents array. 𝐵1 = 𝑔𝑎1.

• For the second output the first element of the base elements array is exponentiated to

the second element of the exponents array: 𝐵2 = 𝑔𝑎2

• The third output is computed in 2 steps:

o The second element of the base elements array is exponentiated to the first element

of the exponents array 𝐵3
′ = 𝑝𝑘𝐸𝐵

𝑎1

Scytl sVote

Audit of the process

83

o The third element of the base elements array is exponentiated to the second

element of the exponents array 𝐵3
′′ = (

1

∏ 𝑝𝑘𝑅𝐶𝑖
𝑡
𝑖=1

)
𝑎2

Compute the third output multiplying the partial outputs: 𝐵3 = 𝐵3
′ · 𝐵3

′′

2) Challenge step: compute the hash of the Phi function output, the public input and the string data

𝑐 = 𝐻𝑎𝑠ℎ(𝐶0
′‖𝐷0‖

𝐶1
′

𝐷1
′‖ 𝐵1‖𝐵2‖𝐵3‖"𝐷𝑎𝑡𝑎").

3) Answer step: compute 𝑧1 = 𝑎1 + 𝑐 · (𝑟 · 𝑠𝑘𝐼𝐷) and 𝑧2 = 𝑎1 + 𝑐 · 𝑙.

Output

• Schnorr Proof (𝑐; 𝑧1; 𝑧2).

11.1.6 Plaintext equality proof verifier

Input

• Base elements (group elements): [𝑔, 𝑝𝑘𝐸𝐿,
1

∏ 𝑝𝑘𝑅𝐶𝑖
𝑡
𝑖=1

]

• Public input (group elements): [𝐶0
′ , 𝐷0,

𝐶1
′

𝐷1
′]

• Plaintext equality proof: (𝑐; 𝑧1; 𝑧2).

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• The function PHI is defined by:

o Number of inputs = number of exponents = 2

o Number of outputs = number of elements of the public input array = 3

o Base elements

o Computation rules [(1,1); (1,2); (2,1), (3,2)]

Operation

1) Check that 𝑐, 𝑧1 𝑎𝑛𝑑 𝑧2 are exponents of the mathematical group

2) Check that [𝐶0
′ , 𝐷0,

𝐶1
′

𝐷1
′] are group elements of the mathematical group

3) Compute (𝐷1, 𝐷2, 𝐷3) = 𝑃𝐻𝐼(𝑧1, 𝑧2) in the following way:

• The computation rules ([(1,1); (1,2); (2,1), (3,2)]) establish that in order to generate the

first output the first element of the base elements array should be exponentiated to the

first element of the exponents array. 𝐷1 = 𝑔𝑧1.

• For the second output the first element of the base elements array is exponentiated to

the second element of the exponents array𝐷2 = 𝑔𝑧2

Scytl sVote

Audit of the process

84

• The third output is computed in 2 steps:

o The second element of the base elements array is exponentiated to the first element

of the exponents array 𝐷3
′ = 𝑝𝑘𝐸𝐿

𝑧1

o The third element of the base elements array is exponentiated to the second

element of the exponents array 𝐷3
′′ = (

1

∏ 𝑝𝑘𝑅𝐶𝑖
𝑡
𝑖=1

)
𝑧2

Compute the third output multiplying the partial outputs: 𝐷3 = 𝐷3
′ · 𝐷3

′′

4) Compute 𝐵1 = (𝐶0
′)−𝑐 · 𝐷1, 𝐵2 = (𝐷0)

−𝑐 · 𝐷2 and 𝐵3 = (
𝐶1

′

𝐷1
′)

−𝑐 · 𝐷3.

5) Compute 𝑐′ = 𝐻𝑎𝑠ℎ(𝐶0
′‖𝐷0‖

𝐶1
′

𝐷1
′‖ 𝐵1‖𝐵2‖𝐵3‖"𝐷𝑎𝑡𝑎") and check that 𝑐′ = 𝑐

Output

• OK / Not OK

11.1.7 Decryption proof generator

Based in the Chaum-Pedersen protocol for proving equality of discrete logarithms.

Input

• Base elements: [𝑔 , 𝐶0]

• Exponents: (𝑠𝑘1, … , 𝑠𝑘𝑘).

• Public input (group elements): [𝑝𝑘1, 𝐶
′
1, 𝑝𝑘2, 𝐶

′
2, … , 𝑝𝑘𝑘, 𝐶

′
𝑘]

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• Function PHI

o Number of inputs = number of exponents = 𝑘

o Number of outputs = number of elements of the public input array = 2𝑘

o Base elements

o Computation rules = [(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); … ; (1, 𝑘); (2, 𝑘)]

Operation

1) Commit step:

a) Pick as many exponents as the number of elements in the exponents array: (𝑎1, … , 𝑎𝑘).

b) Compute (𝐵1, 𝐵2, … , 𝐵2𝑘) = 𝑃𝐻𝐼(𝑎1, … , 𝑎𝑘) in the following way:

• The computation rules ([(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); … ; (1, 𝑘); (2, 𝑘)]) establish

that to compute the outputs each element in the base elements array should be

Scytl sVote

Audit of the process

85

exponentiated to every element in the exponents array: (𝐵1, 𝐵2, … , 𝐵2𝑘−1, 𝐵2𝑘) =

(𝑔𝑎1 , 𝐶0
𝑎1 , … , 𝑔𝑎𝑘 , 𝐶0

𝑎𝑘) .

2) Challenge step: compute the hash of the Phi function output, the public input and the string data

𝑐 = 𝐻𝑎𝑠ℎ(𝑝𝑘1‖𝐶1
′‖…‖𝑝𝑘𝑘‖𝐶𝑘

′‖ 𝐵1‖…‖𝐵𝑘‖"𝐷𝑎𝑡𝑎").

3) Answer step: compute (𝑧1, … , 𝑧𝑘) as 𝑧𝑗 = 𝑎𝑗 + 𝑐 · (𝑠𝑘𝑗).

Output

• Decryption Proof (𝑐; 𝑧1; 𝑧2; … ; 𝑧𝑘).

11.1.8 Decryption Proof verifier

Based in the Chaum-Pedersen protocol for proving equality of discrete logarithms

Input

• Base elements: [𝑔 , 𝐶0]

• Public input (group elements): [𝑝𝑘1, 𝐶
′
1, 𝑝𝑘2, 𝐶

′
2, … , 𝑝𝑘𝑘, 𝐶

′
𝑘]

• Decryption Proof (𝑐; 𝑧1; 𝑧2; … ; 𝑧𝑘)

• Auxiliary data string "𝐷𝑎𝑡𝑎"

• Function PHI

o Number of inputs = number of exponents = 𝑘

o Number of outputs = number of elements of the public input array = 2𝑘

o Base elements

o Computation rules = [(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); … ; (1, 𝑘); (2, 𝑘)]

Operation

1) Check that 𝑐, 𝑧1, 𝑧2, … , 𝑧𝑘 are exponents of the mathematical group

2) Check that 𝑝𝑘1, 𝐶
′
1, 𝑝𝑘2, 𝐶

′
2, … , 𝑝𝑘𝑘, 𝐶

′
𝑘 are group elements of the mathematical group.

3) Compute (𝐷1, 𝐷2, … , 𝐷2𝑘) = 𝑃𝐻𝐼(𝑧1, … , 𝑧𝑘) in the following way:

• The computation rules ([(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); … ; (1, 𝑘); (2, 𝑘)]) establish that

in order to compute the outputs each element in the base elements array should be

exponentiated to every element in the exponents array: (𝐷1, 𝐷2, … , 𝐷2𝑘−1, 𝐷2𝑘) =

(𝑔𝑧1 , 𝐶0
𝑧1 , … , 𝑔𝑧𝑘 , 𝐶0

𝑧𝑘) .

4) Compute 𝐵𝑖 = (𝑝𝑘𝑖+1

2

)
−𝑐

· 𝐷𝑖 and 𝐵𝑖+1 = (𝐶𝑖+1

2

)
−𝑐

· 𝐷𝑖

5) Compute 𝑐′ = 𝐻𝑎𝑠ℎ(𝑝𝑘1‖𝐶1
′‖…‖𝑝𝑘𝑘‖𝐶𝑘

′‖ 𝐵1‖…‖𝐵𝑘‖"𝐷𝑎𝑡𝑎")

Output

Scytl sVote

Audit of the process

86

• OK / Not OK

11.1.9 X.509 Certificate Validation

The abstract class X.509Certificate inside the package java.security.cert provides a standard

way to access all the attributes of a X.509 certificate.

Firstly, convert the certificates to be validated to X509Certificate object:

Certificate validity

The abstract class X.509Certificate provides a method to check that a given date is within the

certificate’s validity period. The method is checkValidity() and receives as a parameter an object of type

Date inside the java.util package.

To audit the validity of the certificate we propose that:

• If the audit date is within the certificate’s validity period, use the current date as a parameter

for the checkValidity() method.

• If the audit date is outside the certificate’s validity period, use the election end date as a

parameter for the checkValidity() method.

Subject DN validation

Compare the subject distinguished name of each of the certificates with the expected one. This value

can be obtained using the method getSubjectX500Principal() from the X509Certificate. This method

returns an object X500Principal and the method getName() returns the string representation of the

subject distinguished name in rfc2253 format. The values to be compared are those contained inside

the subject distinguished name:

• Subject Common Name (SCN)

• Organizational Unit (OU)

• Organization (O)

• Country (C)

To obtain these values, we propose to use the LDAP API as it is explained in the Annex 11.1.10.

The expected values for each one of the certificates are those specified in Table 2, Table 3 and Table

4.

String credentialsCaPem =

 JsonUtils.getJsonObject(electionInformationContentJson).getString(CREDENTIALS_CA);

X509Certificate credentialsCa =

X509Certificate)PemUtils.certificateFromPem(credentialsCaPem);

Scytl sVote

Audit of the process

87

Issuer DN validation

Compare the subject distinguished name of the issuer certificate of each one of the certificates with the

expected one. This value can be obtained using the method getIssuerX500Principal() from the

X509Certificate. This method returns an object X500Principal and the method getName() returns the

string representation of the subject distinguished name in rfc2253 format. The values to be compared

are those contained inside the subject distinguished name:

• Subject Common Name (SCN)

• Organizational Unit (OU)

• Organization (O)

• Country (C)

To obtain these values, we propose using the LDAP API as it is explained in Annex 11.1.10.

The expected values for each one of the certificates are those specified in Table 2, Table 3 and Table

4.

Key usage

Depending on the type of certificate, the key contained in it may have different purposes. The abstract

class X.509Certificate inside the package java.security.cert provides a standard way to access all the

attributes of an X.509 certificate. In order to validate the key type of the certificate we propose to use

the method getKeyUsage() inside X.509Certificate class, that returns the KeyUsage extension of the

certificate that is being validated, represented as an array of Booleans:

The corresponding key usages of each certificate are detailed in Table 2, Table 3 and Table 4.

Signature

To validate the signature of one certificate, first, get the public key from the issuer certificate using the

method getPublicKey() defined in X509Certificate class. Then, use the method verify() in the same class

to verify the signature of the certificate using the public key obtained in the first step.

KeyUsage ::= BIT STRING {

 digitalSignature (0),

 nonRepudiation (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8)

}

Scytl sVote

Audit of the process

88

11.1.10 Mixing proof generator

Based on Bayer and Groth proof of a shuffle [2].

Notice that as this is a specification for implementing the shuffle proof, matrices rows in the original

paper are considered columns in this description and columns are considered rows.

Input

• 𝑚, 𝑛

• List of encrypted votes 𝐶 = {𝐶𝑖}𝑖=1
𝑁

• List of re-encrypted and permuted votes 𝐶 ′ = {𝐶𝑖
′}𝑖=1

𝑁 (where 𝐶𝑖
′ = 𝐶𝜋(𝑖)ℰ𝑝𝑘(1; 𝜌𝑖))

• List of re-encryption parameters 𝜌 = {𝜌𝑖}𝑖=1
𝑁

• Permutation 𝑎 = {𝑎1, … , 𝑎𝑁} = {𝜋(1), … , 𝜋(𝑁)}

• Mathematical group (𝑝, 𝑞, 𝑔)

• Public key used to encrypt the votes: 𝑝𝑘

Operation

1) Generate the commitment key 𝑐𝑘:

• Generate a group element using the Group Element generation primitive with input

the mathematical group (𝑝, 𝑞, 𝑔). The result is 𝐻.

• Generate as many group elements as 𝑛 using the Group Element generation primitive

with input the mathematical group (𝑝, 𝑞, 𝑔). The result is 𝐺1, … , 𝐺𝑛.

The commitment key is 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻).

2) Given the permutation 𝑎 = {𝑎1, … , 𝑎𝑁} arrange it in a matrix of 𝑚 rows and 𝑛 columns:

𝐴 = (

𝑎1 ⋯ 𝑎𝑛

⋮ ⋱ ⋮
𝑎(𝑚−1)·𝑛+1 ⋯ 𝑎𝑁

) = (
𝐴1
⃗⃗⃗⃗

⋮

𝐴𝑚
⃗⃗ ⃗⃗ ⃗

)

3) Commit to each row 𝐴𝑖 (for 𝑖 = 1,… ,𝑚) of the permutation matrix 𝐴 using the Commitment

generation primitive with the following inputs:

• A random exponent 𝑟𝑖 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed: 𝐴𝑖
⃗⃗ ⃗

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(𝐴𝑖
⃗⃗ ⃗ ; 𝑟𝑖).

After committing to all the rows, define the vector of commitments as 𝑐 𝐴 =

(𝑐𝑜𝑚𝑐𝑘(𝐴1
⃗⃗⃗⃗ ; 𝑟1), … , 𝑐𝑜𝑚𝑐𝑘(𝐴𝑚

⃗⃗ ⃗⃗ ⃗ ; 𝑟𝑚)) and the vector of randomness as 𝑟 = (𝑟1, … 𝑟𝑚).

4) Given the list of encrypted votes 𝐶 arrange them in a matrix of 𝑚 rows and 𝑛 columns:

(

𝐶1 ⋯ 𝐶𝑛

⋮ ⋱ ⋮
𝐶(𝑚−1)·𝑛+1 ⋯ 𝐶𝑁

) = (
𝐶 1
⋮

𝐶 𝑚

)

5) Given the list of encrypted votes 𝐶 ′ arrange them in a matrix of 𝑚 rows and 𝑛 columns:

Scytl sVote

Audit of the process

89

(

𝐶1
′ ⋯ 𝐶𝑛

′

⋮ ⋱ ⋮
𝐶(𝑚−1)·𝑛+1

′ ⋯ 𝐶𝑁
′
) = (

𝐶 1
′

⋮

𝐶 𝑚
′

)

6) Concatenate the values of 𝐶 , 𝐶 ′ and 𝑐 𝐴 in the following way:

• For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

• For each element in 𝐶 ′ convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴).

7) Given 𝑥 and the permutation 𝑎 = {𝑎1, … , 𝑎𝑁}, compute the exponentiation of 𝑥 to each element

on 𝑎 : 𝑥𝑎𝑖 𝑚𝑜𝑑 𝑝. The result is 𝑏⃗ = {𝑏1, … , 𝑏𝑁} = {𝑥𝑎1 , … , 𝑥𝑎𝑁 }.

8) Given 𝑏⃗ arrange it in a matrix of 𝑚 rows and 𝑛 columns:

𝐵 = (

𝑏1 ⋯ 𝑏𝑛

⋮ ⋱ ⋮
𝑏(𝑚−1)·𝑛+1 ⋯ 𝑏𝑁

) = (
𝐵1
⃗⃗⃗⃗

⋮

𝐵𝑚
⃗⃗ ⃗⃗ ⃗

)

9) Commit to each row 𝐵𝑖
⃗⃗ ⃗ (for 𝑖 = 1,… ,𝑚) using the Commitment generation primitive with the

following inputs:

• A random exponent 𝑠𝑖 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed: 𝐵𝑖
⃗⃗ ⃗

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(𝐵𝑖
⃗⃗ ⃗ ; 𝑠𝑖).

After committing to all the rows, define the vector of commitment as 𝑐 𝐵 =

(𝑐𝑜𝑚𝑐𝑘(𝐵1
⃗⃗⃗⃗ ; 𝑠1),… , 𝑐𝑜𝑚𝑐𝑘(𝐵𝑚

⃗⃗ ⃗⃗ ⃗ ; 𝑠𝑚)) and the vector of randomness as 𝑠 = (𝑠1, … 𝑠𝑚).

10) Concatenate the values of 𝐶 , 𝐶 ′,𝑐 𝐴 and 𝑐 𝐵 in the following way:

• For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

• For each element in 𝐶 ′ convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑦 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴|𝑐 𝐵).

11) Concatenate the values of 𝐶 , 𝐶 ′,𝑐 𝐴, 𝑐 𝐵 and the number 1 in the following way:

Scytl sVote

Audit of the process

90

• For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

• For each element in 𝐶 ′ convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the

number 1 and compute a hash of the concatenation. Call the result 𝑧 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴|𝑐 𝐵|1).

12) For each element in 𝑎 and 𝑏⃗ compute the following values:

𝑑1 = 𝑦 · 𝑎1 + 𝑏1

⋮
⋮

𝑑𝑁 = 𝑦 · 𝑎𝑁 + 𝑏𝑁

 The result is 𝑑 = (𝑑1, … 𝑑𝑁).

13) For each element in 𝑑 compute:

𝑑1 − 𝑧
⋮

𝑑𝑁 − 𝑧

𝒃𝑃𝐴𝑟𝑔 = ∏(𝑑𝑖 − 𝑧)

𝑁

𝑖=1

arrange it in a matrix of 𝑚 rows and 𝑛 columns

𝐴𝑃𝐴𝑟𝑔 = (

𝑑1 − 𝑧 ⋯ 𝑑𝑛 − 𝑧
⋮ ⋱ ⋮

𝑑(𝑚−1)·𝑛+1 − 𝑧 ⋯ 𝑑𝑁 − 𝑧
) = (

𝐴 1
𝑃𝐴𝑟𝑔

⋮

𝐴 𝑚
𝑃𝐴𝑟𝑔

)

14) For each element in 𝑟 and 𝑠 compute the following values:

𝑡1 = 𝑦 · 𝑟1 + 𝑠1
⋮

𝑡𝑚 = 𝑦 · 𝑟𝑚 + 𝑠𝑚

The result is 𝑡 = (𝑡1, … , 𝑡𝑚)

15) Generate 𝑚 commitments of the vector of length 𝑛 : (−𝑧, … ,−𝑧) using the Commitment

generation primitive with the following inputs:

o Exponent: 0

o List of elements to be committed: (−𝑧,… ,−𝑧)

o Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑜𝑚𝑐𝑘(−𝑧,…−, 𝑧 ; 0).

After computing all the commitments, define the vector of commitments as 𝑐 −𝑧 =

(𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0), … , 𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0))

16) Compute the exponentiation of each element in 𝑐 𝐴 to the hash value 𝑦: 𝑐 𝐴
𝑦

Scytl sVote

Audit of the process

91

17) Compute the product of each element in 𝑐 𝐴
𝑦
 by the corresponding element in 𝑐 𝐵 and obtain 𝑐 𝐷:

𝑐 𝐷 = 𝑐 𝐴
𝑦
· 𝑐 𝐵.

18) Compute the product of each element in 𝑐 𝐷 by the corresponding element in 𝑐 −𝑧: 𝑐 𝐴
𝑃𝐴𝑟𝑔 = 𝑐 𝐷𝑐 −𝑧

19) In case 𝑚 = 1 the result of the operation above (𝑐 𝐴
𝑃𝐴𝑟𝑔

), the matrix 𝐴𝑃𝐴𝑟𝑔 and the vector 𝑡 , will

have only one element and the protocol will not work (more precisely, the Hadamard product

argument required by the Product argument). For this reason, the following modifications should

be done:

o Modify 𝑐 𝐴
𝑃𝐴𝑟𝑔

:

▪ Generate a vector with 𝑛 elements filled with 1: (1,… ,1)

▪ Commit to the vector using the Commitment generation primitive with the

following inputs:

• Exponent 0

• List of elements to be committed: (1, … ,1)

• Commitment key (𝐺1, … 𝐺𝑛 , 𝐻)

▪ Reconstruct the vector 𝑐 𝐴
𝑃𝐴𝑟𝑔

 in the following way:

• The first element of the vector is the value already computed: 𝑐 𝐷𝑐 −𝑧

• The second element of the vector is the commitment of the vector:

(1, … ,1) computed in the step above.

o Modify 𝐴𝑃𝐴𝑟𝑔:

▪ As the matrix 𝐴𝑃𝐴𝑟𝑔 has only one row: 𝐴 1
𝑃𝐴𝑟𝑔

, define a second row 𝐴 2
𝑃𝐴𝑟𝑔

containing 𝑛 elements filled with 1: (1, … ,1)

𝐴𝑃𝐴𝑟𝑔 = (
𝑑1 − 𝑧 ⋯ 𝑑𝑛 − 𝑧

1 ⋯ 1
) = (

𝐴 1
𝑃𝐴𝑟𝑔

𝐴 2
𝑃𝐴𝑟𝑔)

o Modify 𝑡 :

▪ As the vector 𝑡 has only element: 𝑡1, define a second element 𝑡2 = 0.

𝑡 = (𝑦 · 𝑟1 + 𝑠1, 0)

20) Use the Product argument with the following inputs:

o 𝑐 𝐴
𝑃𝐴𝑟𝑔

o 𝐴𝑃𝐴𝑟𝑔

o 𝑡

o 𝒃𝑃𝐴𝑟𝑔 = ∏ (𝑑𝑖 − 𝑧)𝑁
𝑖=1

o The commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑁, 𝐻).

21) Given the list of re-encryption parameters 𝜌 and the vector 𝑏⃗ compute 𝜌 = −𝜌 · 𝑏⃗ = −∑ 𝜌𝑖
𝑁
𝑖=1 𝑏𝑖

22) Define the vector 𝑥 = (𝑥1, … , 𝑥𝑁) = (1,… ,𝑁).

23) Compute the exponentiation of each element in 𝐶 to the corresponding element in 𝑥 :

Scytl sVote

Audit of the process

92

𝐶1
𝑥1

⋮
𝐶𝑁

𝑥𝑁

Compute the product of these values 𝐶𝑀𝐸𝑥𝑝𝐴𝑟𝑔 = ∏ 𝐶𝑖
𝑥𝑖𝑁

𝑖=1 .

24) Call the Multi-exponentiation argument with the following inputs:

o 𝐶 1
′ , … , 𝐶 𝑚

′

o 𝐶𝑀𝐸𝑥𝑝𝐴𝑟𝑔

o 𝑐 𝐵

o 𝐵⃗ 1, … , 𝐵⃗ 𝑚

o 𝑠

o 𝜌

o Mathematical group (𝑝, 𝑞, 𝑔)

o 𝑝𝑘

Output

The output of the proof will consist of the following values:

• initialMessage → 𝑐 𝐴

• firstAnswer → 𝑐 𝐵

• secondAnswer:

o msgPA → represents the initial message of Product Argument

▪ commitmentPublicB → 𝑐𝑏

▪ iniHPA → Initial message of Hadamard Product Argument

• commitmentPublicB → 𝑐 𝐵

▪ ansHPA → Answer of Hadamard Product Argument

• initial → Initial message of Zero Argument

o commitmentPublicA0 → 𝑐𝐴0

o commitmentPublicBM → 𝑐𝐵𝑚

o commitmentPublicD → 𝑐 𝐷

• answer → Answer of Zero Argument

o exponentsA → 𝑎

o exponentsB → 𝑏⃗

o exponentR → 𝑟

o exponentS → 𝑠

o exponentT → 𝑡

• iniSVA → represents the initial message of Single Value Product

Argument

o commitmentPublicD → 𝑐𝑑

o commitmentPublicLowDelta → 𝑐𝛿

o commitmentPublicHighDelta → 𝑐∆

Scytl sVote

Audit of the process

93

• ansSVA → represents the answer of Single Value Product Argument.

o exponentsTildeA → 𝑎̃1, … , 𝑎̃𝑛

o exponentsTildeB → 𝑏̃1, … , 𝑏̃𝑛

o exponentsTildeR → 𝑟̃

o exponentsTildeS → 𝑠̃

▪ iniMEBasic → initial message of multi-exponentiation argument

• commitmentPublicA0 → 𝑐𝐴0

• commitmentPublicB → {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1

• ciphertextsE → {𝐸𝑘}𝑘=0
2𝑚−1

▪ ansMEBasic → answer of multi-exponentiation argument

• exponentsA → 𝑎

• exponentR → 𝑟

• exponentB → 𝑏

• exponentS → 𝑠

• randomnessTau → 𝜏

11.1.10.1 Multi-exponentiation argument

Input

• 𝐶 1, … , 𝐶 𝑚

• 𝐶

• 𝑐 𝐴

• 𝐴 = (𝑎 1, … , 𝑎 𝑚)

• 𝑟 ∈ ℤ𝑞
𝑚

• 𝜌 ∈ ℤ𝑞

• 𝑝, 𝑞, 𝑔 (the encryption parameters)

• 𝑝𝑘 (public key used to encrypt the votes)

Operation

1) Generate 𝑛 random elements between 1 and q-1 and construct the vector 𝑎 0.

2) Generate the following random elements between 1 and q-1: 𝑟0 ← ℤ𝑞 and

𝑏0, 𝑠0, 𝜏0, … , 𝑏2𝑚−1, 𝑠2𝑚−1, 𝜏2𝑚−1 ← ℤ𝑞

3) Set 𝑏𝑚 = 0, 𝑠𝑚 = 0, 𝜏𝑚 = 𝜌

4) Commit to the vector 𝑎 0 using the Commitment generation primitive with the following inputs:

• The exponent 𝑟0

• List of elements to be committed: 𝑎 0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐴0
= 𝑐𝑜𝑚𝑐𝑘(𝑎 0; 𝑟0)

Scytl sVote

Audit of the process

94

5) Commit to each element 𝑏𝑘 (𝑘 = 0,… ,2𝑚 − 1) using the Commitment generation primitive with

the following inputs:

• The exponent 𝑠𝑘

• List of elements to be committed: 𝑏𝑘 (the list contains only one element)

• Commitment key 𝑐𝑘 = (𝐺1, 𝐻)

The result is the commitment 𝑐𝐵𝑘
= 𝑐𝑜𝑚𝑐𝑘(𝑏𝑘; 𝑠𝑘).

After computing all the commitments, we will obtain the set of 2𝑚 commitments: {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1

6) For each pair of elements (𝑏𝑘, 𝜏𝑘) for 𝑘 = 0,… ,2𝑚 − 1, call the ElGamal encryption primitive

with the following inputs:

• (𝑝, 𝑞, 𝑔)

• 𝑝𝑘

• 𝑔𝑏𝑘

• 𝜏𝑘

The result is the encryption of 𝑔𝑏𝑘 using 𝜏𝑘 as the randomness for encrypting: ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)

After computing all the encryptions, we will obtain 2𝑚 encryption: {ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)}𝑘=0

2𝑚−1

7) Given 𝑎 1, … , 𝑎 𝑚 and 𝐶 1, … , 𝐶 𝑚 compute, for each 𝑘 = 0,… ,2𝑚 − 1, the following products:

∏ 𝐶
𝑖

𝑎⃗ 𝑗

𝑚,𝑚

𝑖=0,𝑗=0

𝑗=(𝑘−𝑚)+1

The exponentiation of a vector to another vector is defined as:

𝑐 𝑎⃗ = ∏𝑐
𝑗

𝑎𝑗

𝑛

𝑗=1

8) Given the values generated in steps 6) and 7), compute the following 2𝑚 values:

𝐸0 = ℰ𝑝𝑘(𝑔
𝑏0; 𝜏0) ∏ 𝐶

𝑖

𝑎⃗ 𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=1−𝑚

𝐸1 = ℰ𝑝𝑘(𝑔
𝑏1; 𝜏1) ∏ 𝐶

𝑖

𝑎⃗ 𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=2−𝑚

⋮

𝐸2𝑚−1 = ℰ𝑝𝑘(𝑔
𝑏2𝑚−1; 𝜏2𝑚−1) ∏ 𝐶

𝑖

𝑎⃗ 𝑗

𝑚,𝑚

𝑖=0,𝑗=0
𝑗=𝑚

The result is the set 𝐸𝑘 = ℰ𝑝𝑘(𝑔
𝑏𝑘; 𝜏𝑘)∏ 𝐶

𝑖

𝑎⃗ 𝑗𝑚,𝑚
𝑖=0,𝑗=0

𝑗=(𝑘−𝑚)+1

 for 𝑘 = 0,… ,2𝑚 − 1.

9) Concatenate the values of 𝐶 , 𝐶 ′, 𝑐 𝐴, 𝑐𝐴0
, {𝑐𝐵𝑘

}
𝑘=0

2𝑚−1
 and {𝐸𝑘}𝑘=0

2𝑚−1 in the following way:

• For each element in 𝐶 convert it to a string and concatenate all of them in a single value.

Scytl sVote

Audit of the process

95

• For each element in 𝐶 ′ convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝐴0
 to a string.

• For each element in {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1
 convert it to a string and concatenate all of them in a

single value.

• For each element in {𝐸𝑘}𝑘=0
2𝑚−1 convert it to a string and concatenate all of them in a

single value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ (𝐶 |𝐶 ′|𝑐 𝐴|𝑐𝐴0
|{𝑐𝐵𝑘

}
𝑘=0

2𝑚−1
|{𝐸𝑘}𝑘=0

2𝑚−1).

10) Compute the following vector 𝑥 = (𝑥, 𝑥2, … , 𝑥𝑚)

11) Arrange the vectors (𝑎 1, … , 𝑎 𝑚) in a matrix 𝐴 having 𝑛 rows and 𝑚 columns:

𝐴 = (𝑎 1 ⋯ 𝑎 𝑚) = (

𝑎1 ⋯ 𝑎(𝑚−1)·𝑛+1

⋮ ⋱ ⋮
𝑎𝑛 ⋯ 𝑎𝑁

)

12) Given 𝑎 0, 𝐴 and 𝑥 compute 𝑎 = 𝑎 0 + 𝐴𝑥 , where the product of a matrix by a vector is done in

the standard way.

13) Given 𝑟 , 𝑥 and 𝑟0 compute 𝑟 = 𝑟0 + 𝑟 · 𝑥 , where 𝑟 · 𝑥 is the standard inner product 𝑟 · 𝑥 =

∑ 𝑟𝑖𝑥𝑖
𝑚
𝑖=1 .

14) Given 𝑏0, {𝑏𝑘}𝑘=0
2𝑚−1 and 𝑥 , compute 𝑏 = 𝑏0 + ∑ 𝑏𝑘𝑥

𝑘2𝑚−1
𝑘=1 .

15) Given 𝑠0, {𝑠𝑘}𝑘=0
2𝑚−1 and 𝑥 , compute 𝑠 = 𝑠0 + ∑ 𝑠𝑘𝑥

𝑘.2𝑚−1
𝑘=1

16) Given 𝜏0, {𝜏𝑘}𝑘=0
2𝑚−1 and 𝑥 , compute 𝜏 = 𝜏0 + ∑ 𝜏𝑘𝑥

𝑘2𝑚−1
𝑘=1 .

Output

• Output 𝑎 , 𝑟, 𝑏, 𝑠, 𝜏

11.1.10.2 Product argument

With this argument we can demonstrate that a set of committed elements have a particular product.

Input

• 𝑐 𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟) = (𝑐𝐴1
, 𝑐𝐴2

, … , 𝑐𝐴𝑚
) (notice that in case 𝑚 = 1 and according to what is

explained in step 19) this vector will contain 2 elements instead of 1)

• 𝐴 = (𝑎 1, … , 𝑎 𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19) this

vector will contain 2 elements instead of 1)

• 𝑟 = (𝑟1, … , 𝑟𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19) this

vector will contain 2 elements instead of 1)

• 𝑏 = ∏ ∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

• Commitment public key 𝑐𝑘

Scytl sVote

Audit of the process

96

Operation

1) Given the matrix 𝐴

𝐴 = (
𝑎 1
⋮

𝑎 𝑚

) = (

𝑎1,1 ⋯ 𝑎1,𝑛

⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

)

Compute the product of the elements of each column:

∏𝑎𝑖1

𝑚

𝑖=1

,∏𝑎𝑖2

𝑚

𝑖=1

, … ,∏𝑎𝑖𝑛

𝑚

𝑖=1

and define the vector 𝑏⃗ = (∏ 𝑎𝑖1
𝑚
𝑖=1 , ∏ 𝑎𝑖2

𝑚
𝑖=1 , … ,∏ 𝑎𝑖𝑛

𝑚
𝑖=1).

2) Commit to 𝑏⃗ using the Commitment generation primitive with the following inputs:

• A random exponent 𝑠 ∈ ℤ𝑞 between 1 and q-1.

• List of elements to be committed: 𝑏⃗

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Obtain the commitment 𝑐𝑏 = 𝑐𝑜𝑚𝑐𝑘(∏ 𝑎1𝑗 , …
𝑚
𝑗=1 , ∏ 𝑎𝑛𝑗

𝑚
𝑗=1 ; 𝑠)

3) Engage in a Hadamard product argument given as input 𝑐 𝐴, 𝑐𝑏, 𝑏⃗ , 𝑎 1, … , 𝑎 𝑚, 𝑟 , 𝑠 (the name of

the variables is the same here as in the Hadamard product argument)

4) Engage in a Single value product argument given as input:

• 𝑏𝑆𝑉𝑃𝐴𝑟𝑔 = 𝑏

• 𝑎 𝑆𝑉𝑃𝐴𝑟𝑔 = 𝑏⃗

• 𝑐𝑎
𝑆𝑉𝑃𝐴𝑟𝑔

= 𝑐𝑏

11.1.10.3 Hadamard product argument

Input

• 𝑐 𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟) = (𝑐𝐴1
, 𝑐𝐴2

, … , 𝑐𝐴𝑚
) (notice that in case 𝑚 = 1 and according to what is

explained in step 19) this vector will contain 2 elements instead of 1.

• 𝑐𝑏 = 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ ; 𝑠)

• 𝑏⃗

• 𝑎 1, … , 𝑎 𝑚 (notice that in case 𝑚 = 1 and according to what is explained in step 19) this

vector will contain 2 elements instead of 1)

• 𝑟 = (𝑟1, … , 𝑟𝑚) (notice that in case 𝑚 = 1 and according to what is explained in step 19) this

vector will contain 2 elements instead of 1)

• 𝑠

• Commitment public key ck

Operation

1) If 𝑚 > 1:

• Given the matrix 𝐴

Scytl sVote

Audit of the process

97

𝐴 = (
𝑎 1
⋮

𝑎 𝑚

) = (

𝑎1,1 ⋯ 𝑎1,𝑛

⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

)

Compute the vectors 𝑏⃗ 1, … , 𝑏⃗ 𝑚 in the following way:

𝑏⃗ 1 = 𝑎 1 = (𝑎11, 𝑎21, … , 𝑎𝑛1)

𝑏⃗ 2 = 𝑎 1𝑎 2 = (∏𝑎1𝑗

2

𝑗=1

,∏𝑎2𝑗

2

𝑗=1

, … ,∏𝑎𝑛𝑗

2

𝑗=1

)

⋮

𝑏⃗ 𝑚−1 = 𝑎 1 ··· 𝑎 𝑚−1 = (∏ 𝑎1𝑗

𝑚−1

𝑗=1

, ∏ 𝑎2𝑗

𝑚−1

𝑗=1

, … , ∏ 𝑎𝑛𝑗

𝑚−1

𝑗=1

)

𝑏⃗ 𝑚 = 𝑎 1 ··· 𝑎 𝑚 = (∏𝑎1𝑗

𝑚

𝑗=1

,∏𝑎2𝑗

𝑚

𝑗=1

, … ,∏𝑎𝑛𝑗

𝑚

𝑗=1

) = 𝑏⃗

That is, each vector is computed as 𝑏⃗ 𝑖 = ∏ 𝑎 𝑧
𝑖
𝑧=1 where the multiplication of two vectors

is the entry-wise product (given 𝑥 and 𝑦 of 𝑛 element, the product 𝑥 𝑦 is defined as 𝑥 𝑦 =

(𝑥1𝑦1, … , 𝑥𝑛𝑦𝑛)). Define the matrix 𝐵 as:

𝐵 = (
𝑏⃗ 1
⋮

𝑏⃗ 𝑚

)

• Commit to the vectors 𝑏⃗ 2, … , 𝑏⃗ 𝑚−1 (notice that for 𝑏⃗ 1 and 𝑏⃗ 𝑚 we already have a

commitment) using the Commitment generation primitive with the following inputs:

▪ A random exponent 𝑠𝑖 ∈ ℤ𝑞 between 1 and q-1

▪ List of elements to be committed: 𝑏⃗ 2

▪ Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

After committing to all the vectors, we will obtain the following commitments:

𝑐𝐵2
= 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 2; 𝑠2)

⋮

𝑐𝐵𝑚−1
= 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 𝑚−1; 𝑠𝑚−1)

• Define the vector s as

𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑚−1, 𝑠𝑚) = (𝑟1, 𝑠2, … , 𝑠𝑚−1, 𝑠)

Notice that the last value of the vector (𝑠) is the randomness used in the commitment

𝑐𝑏 and the first value of the vector (𝑟1) is the first randomness of vector 𝑟 used in the

commitment 𝑐 𝐴.

• Define the commitment to the matrix 𝐵 as:

𝑐 𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠) = (𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 1; 𝑠1), 𝑐𝐵2
, … , 𝑐𝐵𝑚−1

, 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 𝑚; 𝑠𝑚))

where, 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 1; 𝑠1) = 𝑐𝑜𝑚𝑐𝑘(𝑎 1; 𝑟1) and 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 𝑚; 𝑠𝑚) = 𝑐𝑏.

2) If 𝑚 = 1:

• Define 𝑏⃗ 1 = 𝑎 1

Scytl sVote

Audit of the process

98

• Define 𝑏⃗ 2 = 𝑎 1𝑎 2

• The commitment to 𝑏⃗ 1 is directly the commitment to 𝑎 1: 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 1; 𝑠1) = 𝑐𝑜𝑚𝑐𝑘(𝑎 1; 𝑟1)

• The commitment to 𝑏⃗ 2 is directly the commitment 𝑐𝑏: 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 2; 𝑠𝑚) = 𝑐𝑏

• Define the vector s as 𝑠 = (𝑠1, 𝑠2) = (𝑟1, 𝑠), where 𝑟1 is the first randomness of vector 𝑟

used in the commitment 𝑐 𝐴 and 𝑠 is the randomness used in the commitment 𝑐𝑏.

• Define the commitment to the matrix 𝐵 as:

𝑐 𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠) = (𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 1; 𝑠1), (𝑏⃗ 2; 𝑠2)) = (𝑐𝑜𝑚𝑐𝑘(𝑎 1; 𝑟1), 𝑐𝑏)

3) Concatenate the values of 𝑐 𝐴, 𝑐𝑏 and 𝑐 𝐵 in the following way:

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝑏 to a string.

• For each element in 𝑐 𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐 𝐴|𝑐𝑏|𝑐 𝐵)

4) Concatenate the values of 𝑐 𝐴, 𝑐𝑏 ,𝑐 𝐵 and the number 1 in the following way:

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝑏 to a string.

• For each element in 𝑐 𝐵 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the

number 1 and compute a hash of the concatenation. Call the result 𝑦 = 𝐻𝑎𝑠ℎ(𝑐 𝐴|𝑐𝑏|𝑐 𝐵|1).

5) If 𝑚 > 1:

• Given the vectors 𝑏⃗ 1, … , 𝑏⃗ 𝑚−1, 𝑏⃗ 𝑚 and the hash 𝑥, compute the following values:

𝑑 1 = 𝑥1𝑏⃗ 1 𝑚𝑜𝑑 𝑞
⋮

𝑑 𝑚−1 = 𝑥𝑚−1𝑏⃗ 𝑚−1 𝑚𝑜𝑑 𝑞

𝑑 = ∑ 𝑥𝑖𝑏⃗ 𝑖+1

𝑚−1

𝑖=1

 𝑚𝑜𝑑 𝑞

• Given the vector s and the hash 𝑥, compute the following values:

𝑡1 = 𝑥1𝑠1 𝑚𝑜𝑑 𝑞
⋮

𝑡𝑚−1 = 𝑥𝑚−1𝑠𝑚−1 𝑚𝑜𝑑 𝑞

𝑡 = ∑ 𝑥𝑖𝑠𝑖+1

𝑚−1

𝑖=1

 𝑚𝑜𝑑 𝑞

6) If 𝑚 = 1:

• Given the vectors 𝑏⃗ 1, 𝑏⃗ 2 and the hash 𝑥, compute the following values:

Scytl sVote

Audit of the process

99

𝑑 1 = 𝑥1𝑏⃗ 1 𝑚𝑜𝑑 𝑞

𝑑 = 𝑥1𝑏⃗ 2 𝑚𝑜𝑑 𝑞

• Given the vector s and the hash 𝑥, compute the following values:

𝑡1 = 𝑥1𝑠1 𝑚𝑜𝑑 𝑞

𝑡 = 𝑥1𝑠2 𝑚𝑜𝑑 𝑞

7) Commit to each vector 𝑑 𝑖 using the Commitment generation primitive with the following inputs:

• The corresponding 𝑡𝑖

• List of elements to be committed: 𝑑 𝑖

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐷𝑖
= 𝑐𝑜𝑚𝑐𝑘(𝑑 𝑖; 𝑡𝑖).

After computing all the commitments, we will obtain 𝑐𝐷1
… , 𝑐𝐷𝑚−1

 in case 𝑚 > 1 and 𝑐𝐷1
 in case

𝑚 = 1.

8) Commit to the vector 𝑑 using the Commitment generation primitive with the following inputs:

• The corresponding 𝑡

• List of elements to be committed: 𝑑

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐷 = 𝑐𝑜𝑚𝑐𝑘(𝑑 ; 𝑡).

9) Commit to the vector of 𝑛 elements filled with the value −1 using the Commitment generation

primitive with the following inputs:

• The corresponding (−1,… ,−1)

• List of elements to be committed: 0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐−1 = 𝑐𝑜𝑚𝑐𝑘(−1⃗ ; 0).

10) Engage in a Zero argument given as input:

• 𝑐 𝐴
0𝐴𝑟𝑔

= (𝑐𝐴1

0𝐴𝑟𝑔
, 𝑐𝐴2

0𝐴𝑟𝑔
, . . . , 𝑐𝐴𝑚

0𝐴𝑟𝑔
) = (𝑐−1, 𝑐𝐴2

, … , 𝑐𝐴𝑚
) (if 𝑚 = 1 this vector has only two

elements (𝑐−1, 𝑐𝐴2
)).

• 𝑐 𝐵
0𝐴𝑟𝑔

= (𝑐𝐵0

0𝐴𝑟𝑔
, 𝑐𝐵1

0𝐴𝑟𝑔
, . . . , 𝑐𝐵𝑚−1

0𝐴𝑟𝑔
) = (𝑐𝐷, 𝑐𝐷1

… , 𝑐𝐷𝑚−1
) (if 𝑚 = 1 this vector has only two

elements (𝑐𝐷, 𝑐𝐷1
)).

• 𝐴0𝐴𝑟𝑔 = (𝑎 1
0𝐴𝑟𝑔

, 𝑎 2
0𝐴𝑟𝑔

, … , 𝑎 𝑚
0𝐴𝑟𝑔

) = (−1⃗ , 𝑎 2, … , 𝑎 𝑚) and

𝑟 0𝐴𝑟𝑔 = (𝑟1
0𝐴𝑟𝑔

, … , 𝑟𝑚
0𝐴𝑟𝑔

) = (0, 𝑟2, … , 𝑟𝑚) (if 𝑚 = 1 these vectors have only two

elements (−1⃗ , 𝑎 2),(0, 𝑟2))

• 𝐵0𝐴𝑟𝑔 = (𝑏⃗ 0
0𝐴𝑟𝑔

, 𝑏⃗ 1
0𝐴𝑟𝑔

, … , 𝑏⃗ 𝑚−1
0𝐴𝑟𝑔

) = (𝑑 , 𝑑 1, … , 𝑑 𝑚−1) and

𝑠 0𝐴𝑟𝑔 = (𝑠0
0𝐴𝑟𝑔

, … , 𝑠𝑚−1
0𝐴𝑟𝑔

) = (𝑡, 𝑡1, 𝑡2, … , 𝑡𝑚−1) (if 𝑚 = 1 these vectors have only two

elements (𝑑 , 𝑑 1),(𝑡, 𝑡1))

Scytl sVote

Audit of the process

100

11.1.10.4 Zero argument

Input

• 𝑐 𝐴 = 𝑐𝑜𝑚𝑐𝑘(𝐴; 𝑟)

• 𝑐 𝐵 = 𝑐𝑜𝑚𝑐𝑘(𝐵; 𝑠)

• (𝑎 1, … , 𝑎 𝑚) (the rows of matrix 𝐴. Notice that in case 𝑚 = 1 this vector contains 2 elements

according to that explained in step 19)).

• 𝑟 = (𝑟1, … , 𝑟𝑚) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19))

• (𝑏⃗ 0, … , 𝑏⃗ 𝑚−1) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19))

• 𝑠 = (𝑠0, … , 𝑠𝑚−1) (Notice that in case 𝑚 = 1 this vector contains 2 elements according to that

explained in step 19))

Operation

1) If 𝑚 = 1 set 𝑚 = 2 (this change only applies to this argument).

2) Generate 𝑛 random elements between 1 and q-1 and construct the vector 𝑎 0.

3) Commit to the vector 𝑎 0 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑟0 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed: 𝑎 0

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐴0
= 𝑐𝑜𝑚𝑐𝑘(𝑎 0; 𝑟0).

4) Generate 𝑛 random elements between 1 and q-1 and construct the vector 𝑏⃗ 𝑚.

5) Commit to the vector 𝑏⃗ 𝑚 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑠𝑚 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed: 𝑏⃗ 𝑚

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝐵𝑚
= 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ 𝑚; 𝑠𝑚).

6) Define a new operation (we will denote it as ∗) that given two vectors, (𝑎1, … , 𝑎𝑛) and (𝑑1, … , 𝑑𝑛),

does the following:

 (𝑎1, … , 𝑎𝑛) ∗ (𝑑1, … , 𝑑𝑛) = ∑𝑎𝑗𝑑𝑗𝑦
𝑗

𝑛

𝑗=1

where 𝑦 is the hash computed in step 4) of the Hadamard product argument.

7) Compute the values 𝑑𝑘 = ∑ 𝑎 𝑖 ∗ 𝑏⃗ 𝑗0≤𝑖,𝑗≤𝑚

𝑗=(𝑚−𝑘)+𝑖

 with 𝑘 = 0,… ,2𝑚:

𝑑0 = 𝑎 0 ∗ 𝑏⃗ 𝑚

𝑑1 = 𝑎 0 ∗ 𝑏⃗ 𝑚−1 + 𝑎 1 ∗ 𝑏⃗ 𝑚

𝑑2 = 𝑎 0 ∗ 𝑏⃗ 𝑚−2 + 𝑎 1 ∗ 𝑏⃗ 𝑚−1 + 𝑎 2 ∗ 𝑏⃗ 𝑚

⋮

Scytl sVote

Audit of the process

101

𝑑𝑚 = ∑𝑎 𝑖 ∗ 𝑏⃗ 𝑖

𝑚

𝑖=0

𝑑𝑚+1 = ∑𝑎 𝑖 ∗ 𝑏⃗ 𝑖−1

𝑚

𝑖=1

⋮

𝑑2𝑚 = 𝑎 𝑚 ∗ 𝑏⃗ 0

 Define the vector 𝑑 = (𝑑0, … , 𝑑2𝑚).

8) Generate 2𝑚 + 1 random elements between 1 and q-1 and construct the vector 𝑡 = (𝑡0, … 𝑡2𝑚).

Set the element 𝑡𝑚+1 of the vector to 0

9) Commit to each element of the vector 𝑑 using the Commitment generation primitive with the

following inputs:

• The corresponding randomness 𝑡𝑖

• List of elements to be committed: 𝑑𝑖 (list with one element)

• Commitment key 𝑐𝑘 = (𝐺1, 𝐻)

The result is the commitment 𝑐𝐷𝑖
= 𝑐𝑜𝑚𝑐𝑘(𝑑𝑖; 𝑡𝑖).

10) After computing all the commitment define 𝑐 𝐷 as 𝑐 𝐷 = 𝑐𝑜𝑚𝑐𝑘(𝑑 ; 𝑡) = (𝑐𝐷0
, … . , 𝑐𝐷2𝑚

).

11) Concatenate the values of 𝑐 𝐴, 𝑐 𝐵 ,𝑐𝐴0
, 𝑐𝐵𝑚

 and 𝑐 𝐷 in the following way:

• For each element in 𝑐 𝐴 convert it to a string and concatenate all of them in a single

value.

• For each element in 𝑐 𝐵 convert it to a string and concatenate all of them in a single

value.

• Convert 𝑐𝐴0
 to a string.

• Convert 𝑐𝐵𝑚
 to a string.

• For each element in 𝑐 𝐷 convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from all the steps above and compute a

hash of the concatenation. Call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐 𝐴|𝑐 𝐵|𝑐𝐴0
|𝑐𝐵𝑚

|𝑐 𝐷).

12) Given the set of vectors (𝑎 0, 𝑎 1, … , 𝑎 𝑚) and the hash 𝑥 compute the vector 𝑎 in the following

way:

𝑎 = ∑𝑥𝑖𝑎 𝑖

𝑚

𝑖=0

13) Given the set of values (𝑟0, 𝑟1, … , 𝑟𝑚) and the hash 𝑥 compute the value 𝑟 in the following way:

𝑟 = ∑𝑥𝑖𝑟𝑖

𝑚

𝑖=0

14) Given the set of vectors (𝑏⃗ 0, 𝑏⃗ 1, … , 𝑏⃗ 𝑚) and the hash 𝑥 compute the vector 𝑏⃗ in the following

way:

Scytl sVote

Audit of the process

102

𝑏⃗ = ∑𝑥𝑚−𝑗𝑏⃗ 𝑗

𝑚

𝑗=0

15) Given the set of values (𝑠0, 𝑠1, … , 𝑠𝑚) and the hash 𝑥 compute the value 𝑠 in the following way:

𝑠 = ∑𝑥𝑚−𝑗𝑠𝑗

𝑚

𝑗=0

16) Given the set of values (𝑡0, 𝑠1, … , 𝑡2𝑚) and the hash 𝑥 compute the value 𝑡 in the following way:

𝑡 = ∑ 𝑥𝑘𝑡𝑘

2𝑚

𝑘=0

Output

• Output 𝑎 , 𝑟, 𝑏⃗ , 𝑠, 𝑡

11.1.10.5 Single value product argument

Input

• 𝑏

• 𝑎 = (𝑎1, … , 𝑎𝑛)

• 𝑐𝑎 = 𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟)

• 𝑟 ∈ ℤ𝑞

Operation

1) Given 𝑎 , compute the following values:

𝑏1 = 𝑎1 𝑏2 = 𝑎1𝑎2 ⋯ 𝑏𝑛 = ∏𝑎𝑖

𝑛

𝑖=1

2) Generate 𝑛 random exponents 𝑑1, … 𝑑𝑛 ← ℤ𝑞 between 1 and q-1 and define the vector 𝑑 =

(𝑑1, … , 𝑑𝑛).

3) Commit to the vector 𝑑 using the Commitment generation primitive with the following inputs:

• A random exponent 𝑟𝑑 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed: 𝑏⃗ 2

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

The result is the commitment 𝑐𝑑 = 𝑐𝑜𝑚𝑐𝑘(𝑑 ; 𝑟𝑑)

4) Define two values 𝛿1 and 𝛿𝑛 as 𝛿1 = 𝑑1, 𝛿𝑛 = 0

5) Generate the random exponents 𝛿2, … , 𝛿𝑛−1 ← ℤ𝑞 between 1 and q-1.

6) From 𝑑2, … 𝑑𝑛 and 𝛿1, 𝛿2, … , 𝛿𝑛−1 compute the following values for 𝑖 = 1,… , 𝑛 − 1:

−𝛿1𝑑2

−𝛿2𝑑3

⋮
𝛿𝑖𝑑𝑖+1

⋮
−𝛿𝑛−1𝑑𝑛

Scytl sVote

Audit of the process

103

7) Commit to the elements generated in the previous steps using Commitment generation

primitive with the following inputs:

• A random exponent 𝑠1 ∈ ℤ𝑞 between 1 and q-1.

• List of elements to be committed:(−𝛿1𝑑2, … , −𝛿𝑛−1𝑑𝑛)

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛−1, 𝐻)

The result is the commitment 𝑐𝛿 = 𝑐𝑜𝑚𝑐𝑘(−𝛿1𝑑2, … ,−𝛿𝑛−1𝑑𝑛; 𝑠1)

8) From 𝛿1, 𝛿2, … , 𝛿𝑛, 𝑑2, … 𝑑𝑛 and 𝑎2, … 𝑎𝑛 compute the following values for 𝑖 = 1,… , 𝑛 − 1:

−𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2

−𝛿3 − 𝑎3𝛿2 − 𝑏2𝑑3

⋮
−𝛿𝑖+1 − 𝑎𝑖+1𝛿𝑖 − 𝑏𝑖𝑑𝑖+1

⋮
−𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛

9) Commit to the elements generated in the previous steps using the Commitment generation

primitive with the following inputs:

• A random exponent 𝑠𝑥 ∈ ℤ𝑞 between 1 and q-1

• List of elements to be committed:(−𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2, … , −𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛)

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛−1, 𝐻)

The result is the commitment 𝑐∆ = 𝑐𝑜𝑚𝑐𝑘(𝛿2 − 𝑎2𝛿1 − 𝑏1𝑑2, … , 𝛿𝑛 − 𝑎𝑛𝛿𝑛−1 − 𝑏𝑛−1𝑑𝑛; 𝑠𝑥)

10) Convert the values of 𝑐𝑎, 𝑏 ,𝑐𝑑, 𝑐𝛿 and 𝑐∆ to a string and concatenate all of them in a single

value. Compute a hash of the concatenation and call the result 𝑥 = 𝐻𝑎𝑠ℎ(𝑐𝑎|𝑏|𝑐𝑑|𝑐𝛿|𝑐∆).

11) Given 𝑎 , 𝑑 , 𝑟, 𝑟𝑑 and 𝑥, compute the following values:

𝑎̃1 = 𝑥𝑎1 + 𝑑1

⋮
𝑎̃𝑛 = 𝑥𝑎𝑛 + 𝑑𝑛

𝑟̃ = 𝑥𝑟 + 𝑟𝑑

12) Given 𝑏⃗ , 𝛿1, … , 𝛿𝑛, 𝑠1, 𝑠𝑥 and 𝑥, compute the following values:

𝑏̃1 = 𝑥𝑏1 + 𝛿1

⋮
𝑏̃𝑛 = 𝑥𝑏𝑛 + 𝛿𝑛

𝑠̃ = 𝑥𝑠𝑥 + 𝑠1

Output

• Output (𝑎̃1, … , 𝑎̃𝑛), (𝑏̃1, … , 𝑏̃𝑛), 𝑟̃, 𝑠̃ .

11.1.11 Mixing proof verifier

The description of the verification of the mixing zero-knowledge proof is described in the original paper

from Stephanie Bayer and Jens Groth [3].

Input

• Input ciphertexts: 𝐶

• Output ciphertexts: 𝐶 ′

Scytl sVote

Audit of the process

104

• Encryption parameters

• Commitment parameters

• Public key

• Mixing proof:

o initialMessage → 𝑐 𝐴

o firstAnswer → 𝑐 𝐵

o secondAnswer:

▪ msgPA → represents the initial message of Product Argument

• commitmentPublicB → 𝑐𝑏

• iniHPA → Initial message of Hadamard Product Argument

o commitmentPublicB → 𝑐 𝐵

• ansHPA → Answer of Hadamard Product Argument

o initial → Initial message of Zero Argument

▪ commitmentPublicA0 → 𝑐𝐴0

▪ commitmentPublicBM → 𝑐𝐵𝑚

▪ commitmentPublicD → 𝑐 𝐷

o answer → Answer of Zero Argument

▪ exponentsA → 𝑎

▪ exponentsB → 𝑏⃗

▪ exponentR → 𝑟

▪ exponentS → 𝑠

▪ exponentT → 𝑡

o iniSVA → represents the initial message of Single Value

Product Argument

▪ commitmentPublicD → 𝑐𝑑

▪ commitmentPublicLowDelta → 𝑐𝛿

▪ commitmentPublicHighDelta → 𝑐∆

o ansSVA → represents the answer of Single Value Product

Argument.

▪ exponentsTildeA → 𝑎̃1, … , 𝑎̃𝑛

▪ exponentsTildeB → 𝑏̃1, … , 𝑏̃𝑛

▪ exponentsTildeR → 𝑟̃

▪ exponentsTildeS → 𝑠̃

• iniMEBasic → initial message of multi-exponentiation argument

o commitmentPublicA0 → 𝑐𝐴0

o commitmentPublicB → {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1

o ciphertextsE → {𝐸𝑘}𝑘=0
2𝑚−1

Scytl sVote

Audit of the process

105

• ansMEBasic → answer of multi-exponentiation argument

o exponentsA → 𝑎

o exponentR → 𝑟

o exponentB → 𝑏

o exponentS → 𝑠

o randomnessTau → 𝜏

Operation

The paper presents all the zero knowledge arguments as an interactive protocol between the prover

and the verifier. Our implementation uses a non-interactive approach using the Fiat-Shamir

transformation to modify the challenges so that they can be obtained using a hash function. The

parameters used as input for the hash functions are the statement in the order presented in the paper

and the values sent in the initial message are also preserving the order from the paper. We do not

separate the values, just append the new values. More precisely:

• Shuffle argument:

o challenge x → 𝑥𝑆𝐴 = 𝐻(𝐶 |𝐶 ′|𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒)

o challenge y → 𝑦𝑆𝐴 = 𝐻(𝐶 |𝐶 ′|𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒|𝑓𝑖𝑟𝑠𝑡𝐴𝑛𝑠𝑤𝑒𝑟)

o challenge z → 𝑧𝑆𝐴 = 𝐻(𝐶 |𝐶 ′|𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒|𝑓𝑖𝑟𝑠𝑡𝐴𝑛𝑠𝑤𝑒𝑟|1)

• Product argument does not have any challenge

• Hadamard product argument:

o challenge x → 𝑥𝐻𝑃𝐴 = 𝐻(𝑐 𝐴|𝑐𝑏|𝑖𝑛𝑖𝐻𝑃𝐴)

o challenge y → 𝑦𝐻𝑃𝐴 = 𝐻(𝑐 𝐴|𝑐𝑏|𝑖𝑛𝑖𝐻𝑃𝐴|1)

• Zero argument:

o challenge x → 𝑥𝑍𝐴 = 𝐻(𝑐 𝐴|𝑐 𝐵|𝑎𝑛𝑠𝐻𝑃𝐴. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

• Single value product argument:

o challenge x → 𝑥𝑆𝑉𝑃𝐴 = 𝐻(𝑐𝑎|𝑏|𝑖𝑛𝑖𝑆𝑉𝐴)

• Multi-exponentiation argument:

o challenge x → 𝑥𝑀𝐴 = 𝐻(𝐶 ′|𝐶|𝑐 𝐴|𝑖𝑛𝑖𝑀𝐸𝐵𝑎𝑠𝑖𝑐)

It is also important to note that the operator | means concatenation. To append the values from a multi-

variable element from the proof.json file, the process is to concatenate the elements in the same

order presented in the paper, which is also the order in which we have written it at the beginning of the

section. For instance, the element ansHPA.initial would be represented as:

𝑎𝑛𝑠𝐻𝑃𝐴. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑐𝐴0
|𝑐𝐵𝑚

|𝑐 𝐷

Scytl sVote

Audit of the process

106

1) Validate the Hadamard product argument

• Check that 𝑐𝐵2
, … , 𝑐𝐵𝑚−1

∈ 𝔾 where 𝑐 𝐵 is taken from msgPA.iniHPA.commitmentPublic

• Define 𝑐 𝐷 = 𝑐 𝐴
𝑦
· 𝑐 𝐵, where 𝑐 𝐴 is taken from the initialMessage, 𝑐 𝐵 from firstAnswer,

and 𝑦𝑆𝐴 is the challenge computed in the Shuffle argument

• Define 𝑐 −𝑧 = (𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0), … , 𝑐𝑜𝑚𝑐𝑘(−𝑧,… ,−𝑧; 0)).

• Define 𝑐 𝐴
𝑃𝐴𝑟𝑔

= 𝑐 𝐷𝑐 −𝑧.

• Check that 𝑐𝐵1
= 𝑐𝐴1

𝑃𝐴𝑟𝑔

• Check that 𝑐𝐵𝑚
= 𝑐𝑏 where 𝑐𝑏 is taken from msgPA.commitmentPublicB.

• Accept if the zero argument is valid.

2) Validate Zero argument

• Compute the commitment to 𝑎 (ansHPA.answer.exponentsA) using the randomness 𝑟

(ansHPA.answer.exponentR) and the commitment key: 𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟)

• Compute the commitment to 𝑏⃗ (ansHPA.answer.exponentsB) using the randomness 𝑠

(ansHPA.answer.exponentS) and the commitment key: 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ ; 𝑠)

• Compute the commitment to 𝑎 ∗ 𝑏⃗ (ansHPA.answer.exponentsB) using the

randomness t (ansHPA.answer.exponentT) and the commitment key: 𝑐𝑜𝑚𝑐𝑘(𝑎 ∗ 𝑏⃗ ; 𝑡).

• Define 𝑐𝐷𝑖
= 𝑐𝐵𝑖

𝑥𝑖
 and 𝑐𝐷 = ∏ 𝑐𝐵𝑖+1

𝑥𝑖𝑚−1
𝑖=1 , where 𝑐 𝐵 is taken from

msgPA.iniHPA.commitmentPublicB and 𝑥 is the challenge computed in the Hadamard

Product argument.

• Define 𝑐 𝐵 of the Zero argument as 𝑐 𝐵 = (𝑐𝐷, 𝑐𝐷1
, … , 𝑐𝐷𝑚−1

). Notice that if 𝑚 = 1 the

vector will have only two elements.

• Compute the challenge 𝑥𝑍𝐴 as 𝐻𝑎𝑠ℎ(𝑐 𝐴|𝑐 𝐵|𝑎𝑛𝑠𝐻𝑃𝐴. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 𝐻𝑎𝑠ℎ(𝑐 𝐴|𝑐 𝐵|𝑐𝐴0
|𝑐𝐵𝑚

|𝑐 𝐷).

• Define 𝑐−1 = 𝑐𝑜𝑚𝑐𝑘(−1⃗ ; 0) where −1⃗ is the vector of 𝑛 elements filled with the value

−1.

• Compute 𝑐 𝐴
𝑃𝐴𝑟𝑔

 in the same way as it was computed during the validation of the

Hadamard Product Argument.

• Define 𝑐 𝐴 of the Zero argument as 𝑐 𝐴 = (𝑐−1, 𝑐𝐴2

𝑃𝐴𝑟𝑔
, … , 𝑐𝐴𝑚

𝑃𝐴𝑟𝑔
). Notice that if 𝑚 = 1 the

vector will have only two elements.

• Compute ∏ 𝑐𝐴𝑖

𝑥𝑖𝑚
𝑖=0

• Compute ∏ 𝑐𝐵𝑗

𝑥𝑚−𝑗𝑚
𝑗=0

• Compute ∏ 𝑐𝐷𝑘

𝑥𝑘2𝑚
𝑘=0 where 𝑐 𝐷 is taken from ansHPA.initial.commitmentPublicD.

• Check that the following equations hold:

∏𝑐𝐴𝑖

𝑥𝑖

𝑚

𝑖=0

= 𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟) ∏𝑐𝐵𝑗

𝑥𝑚−𝑗

𝑚

𝑗=0

= 𝑐𝑜𝑚𝑐𝑘(𝑏⃗ ; 𝑠) ∏𝑐𝐷𝑘

𝑥𝑘

2𝑚

𝑘=0

= 𝑐𝑜𝑚𝑐𝑘(𝑎 ∗ 𝑏⃗ ; 𝑡)

Scytl sVote

Audit of the process

107

• Check that:

▪ 𝑐𝐴0
, 𝑐𝐵𝑚

∈ 𝔾

▪ 𝑐 𝐷 ∈ 𝔾2𝑚+1

▪ 𝑐𝐷𝑚+1
= 𝑐𝑜𝑚𝑐𝑘(0; 0)

▪ 𝑎 , 𝑏⃗ ∈ ℤ𝑞
𝑛

▪ 𝑟, 𝑠, 𝑡 ∈ ℤ𝑞

3) Validate the Single value product argument

• 𝑐𝑑 , 𝑐𝛿 , 𝑐∆ ∈ 𝔾

• 𝑎̃1, 𝑏̃1, … , 𝑎̃𝑛, 𝑏̃𝑛, 𝑟̃, 𝑠̃ ∈ ℤ𝑞

• Compute 𝑐𝑜𝑚𝑐𝑘(𝑎̃1, … , 𝑎̃𝑛; 𝑟̃) using the values stored in

ansHPA.ansSVA.exponentsTildeA and in ansHPA.ansSVA.exponentsTildeR.

• Compute the challenge 𝑥𝑆𝐴 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴) where 𝑐 𝐴 is taken from the

initialMessage.

• Compute the challenge 𝑦𝑆𝐴 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴|𝑐 𝐵) where 𝑐 𝐵 is taken from the

firstAnswer.

• Compute the challenge 𝑧𝑆𝐴 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴|𝑐 𝐵|1).

• Define the array of values 𝑎 = (𝑎1, … , 𝑎𝑁) where 𝑁 is the number of ciphertexts that

have been mixed. Compute the array 𝑏⃗ = (𝑏1, … , 𝑏𝑁) = (𝑥𝑎1 , … , 𝑥𝑎𝑁) using 𝑥𝑆𝐴.

• Compute the value 𝑏 = ∏ (𝑦 · 𝑎𝑖 + 𝑏𝑖 − 𝑧)𝑁
𝑖=1 using 𝑦𝑆𝐴 and 𝑧𝑆𝐴.

• Compute the challenge 𝑥𝑆𝑉𝑃𝐴 = 𝐻𝑎𝑠ℎ(𝑐𝑎|𝑏|𝑐𝑑|𝑐𝛿|𝑐∆). 𝑐𝑑 is taken from

ansHPA.iniSVA.commitmentPublicD, 𝑐𝛿 from

ansHPA.iniSVA.commitmentPublicLowDelta and 𝑐∆ from commitmentPublicHighDelta.

• Compute 𝑐𝑜𝑚𝑐𝑘 (𝑥𝑏̃2 − 𝑏̃1𝑎̃2, … , 𝑥𝑏̃𝑛 − 𝑏̃𝑛−1𝑎̃𝑛; 𝑠̃) using the value stored in

ansHPA.ansSVA.exponentsTildeA, ansHPA.ansSVA.exponentsTildeB,

ansHPA.ansSVA.exponentsTildeS and the challenge 𝑥𝑆𝑉𝑃𝐴.

• Check that the following equations hold:

𝑐𝑎
𝑥𝑐𝑑 = 𝑐𝑜𝑚𝑐𝑘(𝑎̃1, … , 𝑎̃𝑛; 𝑟̃) 𝑐∆

𝑥𝑐𝛿 = 𝑐𝑜𝑚𝑐𝑘 (𝑥𝑏̃2 − 𝑏̃1𝑎̃2, … , 𝑥𝑏̃𝑛 − 𝑏̃𝑛−1𝑎̃𝑛; 𝑠̃)

𝑏̃1 = 𝑎̃1 𝑏̃𝑛 = 𝑥𝑏

4) Validate the Product argument

• Check if 𝑐𝑏 ∈ 𝔾

• The Product argument is valid if both the Hadamard product argument and the Single

value product argument are convincing.

5) Validate Multi-exponentiation argument

• Check that 𝑐𝐴0
, 𝑐𝐵0

, … , 𝑐𝐵2𝑚−1
∈ 𝔾

• Check that 𝐸0, … , 𝐸2𝑚−1 ∈ ℍ

• Check that 𝑎 ∈ ℤ𝑞
𝑛 and 𝑟, 𝑏, 𝑠, 𝜏 ∈ ℤ𝑞

• Obtain 𝑐𝐵𝑚
 from iniMEBasic.commitmentPublicB and check that 𝑐𝐵𝑚

= 𝑐𝑜𝑚𝑐𝑘(0; 0).

Scytl sVote

Audit of the process

108

• Compute the challenge 𝑥 = 𝐻𝑎𝑠ℎ(𝐶 |𝐶 ′|𝑐 𝐴) where 𝑐 𝐴 is taken from the initialMessage.

• Compute 𝐶 = ∏ 𝐶𝑖
𝑥𝑖𝑁

𝑖=1 .

• Obtain 𝐸𝑚 from iniMEBasic.ciphertextsE and check that 𝐸𝑚 = 𝐶.

• Obtain 𝑐𝐴0
 from iniMEBasic.commitmentPublicA0

• Obtain 𝑐 𝐴 from the firstAnswer and compute 𝑥𝑀𝐴 = 𝐻(𝐶 |𝐶 ′|𝑐 𝐴|𝑖𝑛𝑖𝑀𝐸𝐵𝑎𝑠𝑖𝑐) =

𝐻 (𝐶 |𝐶 ′|𝑐 𝐴|𝑐𝐴0
|{𝑐𝐵𝑘

}
𝑘=0

2𝑚−1
|{𝐸𝑘}𝑘=0

2𝑚−1).

• Define 𝑥 = (𝑥, 𝑥2, … , 𝑥𝑚) and compute 𝑐𝐴0
𝑐 𝐴

𝑥 using 𝑥𝑀𝐴.

• Check that 𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟) where 𝑎 is taken from ansMEBasic.exponentsA and 𝑟 from

ansMEBasic.exponentR.

• Obtain {𝑐𝐵𝑘
}
𝑘=0

2𝑚−1
 from iniMEBasic.commitmentPublicB, 𝑏 from

ansMEBasic.exponentB and 𝑠 from ansMEBasic.exponentS and check that:

𝑐𝐵0
∏ 𝑐𝐵𝐾

𝑥𝑘
= 𝑐𝑜𝑚𝑐𝑘(𝑏; 𝑠)

2𝑚−1

𝑘=1

• Obtain {𝐸𝑘}𝑘=0
2𝑚−1 from iniMEBasic.ciphertextsE and 𝑎 from ansMEBasic.exponentsA.

• Compute the ElGamal encryption of 𝐺𝑏 using the public key received as input and the

randomness 𝜏, stored in ansMEBasic.randomnessTau: ℰ𝑝𝑘(𝐺
𝑏; 𝜏).

• Check that:

𝐸0 ∏ 𝐸𝑘
𝑥𝑘

=

2𝑚−1

𝑘=1

ℰ𝑝𝑘(𝐺
𝑏; 𝜏)∏𝐶 𝑖

𝑥𝑚−𝑖𝑎⃗

𝑚

𝑖=1

Bayer and Groth modification for m=1

Since the option of appending dummy votes and later remove it was discarded from the beginning, the

shuffle argument as it was defined by Bayer and Groth required to be modified to accommodate the

proof for cases in which the amount of received ballots was a prime number. The solution was to perform

a small modification allowing the protocol to run with m=1.

This change only affected the product proof argument. More precisely, the Hadamard product argument

required by the product proof argument. This Hadamard product argument receives as input:

• Arrays of exponents: 𝑎 1, … , 𝑎 𝑚

• Array of exponents: 𝑟

• Array of exponents: 𝑏⃗

• An exponent 𝑠

such that:

Scytl sVote

Audit of the process

109

𝑐𝑎1
= 𝑐𝑜𝑚(𝑎 1; 𝑟1)… 𝑐𝑎𝑚

= 𝑐𝑜𝑚(𝑎 𝑚; 𝑟𝑚)

𝑐𝑏 = 𝑐𝑜𝑚(𝑏⃗ ; 𝑠)

𝑏⃗ = ∏𝑎 𝑖

𝑚

𝑖=0

The first step of the protocol for proving this argument was to compute the initial message. In the paper,

it was required to compute 𝑏⃗ 𝑚−1 = 𝑎 1 · 𝑎 𝑚−1. However, when m=1 this computation requires the use of

𝑎 0 but there is no such value, so the protocol does not work.

To resolve this issue, when m=1, the prover generates a commitment 𝑐𝑎2
= 𝑐𝑜𝑚(𝑎 2; 𝑟2) being 𝑎 2 an

array with n positions filled with 1s and 𝑟1 = 0.

This way, the proof is consistent, and the generated commitment is easily checked. Moreover, every

verifier can implement it in the same way as it does not contain any new randomly generated value.

11.1.12 Group Element generation

Input

• Mathematical group (𝑝, 𝑞, 𝑔)

Operation

• Generate a random exponent 𝑟 ∈ ℤ𝑞 between 1 and q-1.

• Exponentiate the generator 𝑔 to the random exponent: 𝐻 = 𝑔𝑟 𝑚𝑜𝑑 𝑝

Output

• The group element 𝐻

11.1.13 Commitment generation

Input

• Random exponent 𝑟

• List of elements to be committed: 𝑎 = (𝑎1, … , 𝑎𝑛) ∈ ℤ𝑞
𝑛

• Commitment key 𝑐𝑘 = (𝐺1, … , 𝐺𝑛, 𝐻)

Operation

• Compute the exponentiation of 𝐻 to 𝑟: 𝐻𝑟

• For each 𝑎𝑖 where 𝑖 = 1,… , 𝑛 compute the exponentiation 𝐺𝑖
𝑎𝑖.

• Multiply all the exponentiations and obtain the commitment:

𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟) = 𝑐𝑜𝑚𝑐𝑘(𝑎1, … , 𝑎𝑛; 𝑟) = 𝐻𝑟 ∏𝐺𝑖
𝑎𝑖

𝑛

𝑖=1

Output

• The commitment: 𝑐𝑜𝑚𝑐𝑘(𝑎 ; 𝑟)

Scytl sVote

Audit of the process

110

11.1.14 ElGamal encryption

Input

• The mathematical group defined by (𝑝, 𝑞, 𝑔)

• Public key (𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑘) (array of length 𝑘 > 0)

• Plaintext (𝑚1, 𝑚2, … ,𝑚𝑛) of at most 𝑘 element and at least 1 element.

Operation

• The mathematical group defined by (𝑝, 𝑞, 𝑔)

• Generate a random exponent 𝑟 between 1 and 𝑞 − 1.

• Generate the first element of the ciphertext 𝐶0 = 𝑔𝑟 𝑚𝑜𝑑 𝑝.

• If the size of the plaintext is smaller than the size of the public key, compute

o 𝑝𝑘𝑛 = 𝑝𝑘𝑛 + 𝑝𝑘𝑛+1 + 𝑝𝑘𝑛+2 + ⋯+ 𝑝𝑘𝑘 where the value of 𝑝𝑘𝑛 on the right is the old

one and the value on the left is the one used from this point onwards.

• For each element in the plaintext, compute the following elements of the cihpertext: 𝐶𝑖 = (𝑝𝑘𝑖)
𝑟 ·

𝑚𝑖 𝑚𝑜𝑑 𝑝 for 𝑖 = 1,…𝑛.

Output

• The generated random exponent 𝑟

• The ciphertext (𝐶0, 𝐶1, … , 𝐶𝑛)

Scytl sVote

Audit of the process

111

 LDAP API

 Coding and conversions

During the proof generation, the values are obtained and converted from one class to another. The

following lines describe how these conversions are done:

• String to byte[]: Strings are transformed into byte arrays by the method getBytes() of the String

class using StandardCharsets.UTF_8.

• BigInteger to byte[]: BigIntegers are transformed by using toString() method first, and then use

getBytes().

• byte[] to BigInteger: byte arrays are transformed into BigIntegers using the BigInteger

constructor: BigInteger(byte[] input).

• byte[] to Base64 string: byte arrays are encoded base64 strings using the method defined either

in java.util.Base64 (Base64.getEncoder().encodeToString) or in

org.apache.commons.codec.binary.Base64 (Base64.encodeBase64String).

• Base64 string to byte[]: strings encoded in base64 are decoded using the method defined either

in java.util.Base64 (Base64.getDecoder().decode), in

org.apache.commons.codec.binary.Base64 (Base64.decodeBase64) or in

org.bouncycastle.util.encoders.Base64 (Base64.decode)

• byte[] to Base64 byte[]: byte arrays are encoded base64 byte array[] using the method defined

either in org.apache.commons.codec.binary.Base64 (Base64.encodeBase64) or in

java.util.Base64 (Base64.getEncoder().encode).

final LdapHelper ldapHelper = new LdapHelper();

String subjectDn =_certificate.getSubjectX500Principal().getName();

try {

String subjectCn =

 ldapHelper.getAttributeFromDistinguishedName(subjectDn,

 X509CertificateConstants.COMMON_NAME_ATTRIBUTE_NAME);

 String subjectOrgUnit =

 ldapHelper.getAttributeFromDistinguishedName(subjectDn,

 X509CertificateConstants.ORGANIZATIONAL_UNIT_ATTRIBUTE_NAME);

 String subjectOrg =

 ldapHelper.getAttributeFromDistinguishedName(subjectDn,

 X509CertificateConstants.ORGANIZATION_ATTRIBUTE_NAME);

 String subjectCountry =

 ldapHelper.getAttributeFromDistinguishedName(subjectDn,

 X509CertificateConstants.COUNTRY_ATTRIBUTE_NAME);

Scytl sVote

Audit of the process

112

 Data concatenation

 Cryptographic algorithms

These are the cryptographic algorithms used by the online voting system:

• Asymmetric encryption: ElGamal, key length = 2048 bits

• Symmetric encryption: AES128-GCM

• Digital signature: RSA-PSS, SHA2-256, key length = 2048 bits

• Hash: SHA2-256

• Message Authentication Code: HMAC with SHA2-256

 EV Solution Intellectual Property Rights Notice (the Notice)

Scytl sVote is part of a larger system called EV Solution, developed under the "Framework Agreement"

entered into by and between Post CH Ltd (Swiss Post) and Scytl Secure Electronic Voting, S.A. (Scytl)

on September 30th 2015.

Parts of this EV Solution system and other relevant details are defined below.

11.6.1 Definitions

The following terms shall have the meanings specified below:

"EV Solution" means an online voting system consisting of the Scytl Standard Software (also referred

to as Scytl sVote or Scytl Online Voting 2.0) in combination with the Swiss Post-Scytl Software, and all

the associated middleware provided by Scytl as a bundle with the Scytl Standard Software and the

Swiss Post-Scytl Software. Software below middleware (e.g. Linux OS and Windows OS and Oracle

software) that are needed to run the EV Solution are not part of the EV Solution.

"Intellectual Property Rights" or "IPRs", for the purposes of this Notice and pursuant to the Framework

Agreement, means copyright and patent rights (if any), know-how and trade secrets, performance rights

and entitlements to such rights.

"Scytl Online Voting 2.0" is the brand name that was used to identify Scytl Standard Software in the

market.

"Scytl Standard Software" means all software developed by Scytl for the EV Solution, whose

architecture, specifications and capabilities are described in Scytl sVote documents, excluding Swiss

Post-Scytl Software and software developed by Scytl independently to the EV Solution.

public byte[] concatenate(String... data) {

 return StringUtils.join(data).getBytes(StandardCharsets.UTF_8);

}

Scytl sVote

Audit of the process

113

"Software" means software code (source code and object code), user interfaces and documentation

(preparatory documentation and manuals) and including releases and patches etc.

"Scytl sVote" means the registered trademark proprietary to Scytl, that identifies Scytl Standard

Software in the market.

"Swiss Post-Scytl Software" means the software developed for the EV Solution (excluding Scytl

Standard Software) pursuant to the Framework Agreement. Swiss Post-Scytl Software comprises of the

following:

i. Key Translation Module: A mapping service that translates external IDs to internal IDs for

specific entities so that external systems can integrate with sVote.

ii. Swiss Post Integration Tools: A group of applications that allow the integration between Swiss

Post's applications and sVote through file conversions.

iii. Swiss Post Voting Portal Frontend: Frontend application that guides the voters throughout all

the voting steps enabling them to successfully cast a vote for a particular election.

11.6.2 Copyright notice

11.6.2.1 Scytl Standard Software

All intellectual property rights in the Scytl Standard Software are Scytl’s sole property. Scytl owns and

shall retain all rights, title and interest in and to the Scytl Standard Software. Scytl Standard Software is

licensed to Swiss Post under the terms and conditions described in the Framework Agreement.

11.6.2.2 Swiss Post-Scytl Software

All intellectual property rights in the Swiss Post-Scytl Software are the joint property of Scytl and Swiss

Post (Joint IP).

11.6.2.3 EV Solution

All intellectual property rights in the EV Solution other than Joint IP will be owned by Scytl or by third

parties as applicable.

Scytl sVote

Audit of the process

114

