‘ Scytl

Innovating Democracy

Scytl sVote

Protocol Specifications

Software version 2.1

Document version 5.1

Scytl sVote
Protocol Specifications

Scytl — Secure Electronic Voting

STRICTLY CONFIDENTIAL

© Copyright 2018 — SCYTL SECURE ELECTRONIC VOTING, S.A. All rights reserved.

This Document is proprietary to SCYTL SECURE ELECTRONIC VOTING, S.A. (SCYTL) and is

protected by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are
protected by patent applications.

No part of this Document may be: (i) communicated to the public, by any means including the right of
making it available; (ii) distributed including but not limited to sale, rental or lending; (iii) reproduced
whether direct or indirectly, temporary or permanently by any means and/or (iv) adapted, modified or
otherwise transformed.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

www.scytl.com

1 1 e . 2

Scytl sVote
Protocol Specifications

Table of contents

I [1 4 o o LU Tox 1 Lo] o SR 9
1.1 (Do To101 4 a1 T a1 ae] o F= 1 a1 = 4o] o 1RSSR 9
2 SOIULION OVEIVIEW ...ttt e et eeeenaas 11
2.1 Mapping solution to VEIES SWISS reguUIatioNc.uuuiiiiiiiiiiiieiie e 17
3 System configuration ProCeSScccuuuiiieeiiiiiii e e et e eeaean 18
3.1 Platform Root constitution and regiStrationcc.eeeiiiieie i 25
3.2 Tenant constitution and regiStratioNc.eviiiiiiie e 26
I 300 A Y o F= T [oo 1S3 1 LU i [o) o [USRS 26
3.2.2 TeNANE FEGISTIATION ...ceii ittt ettt e e e ettt e e e e e e e st b bt e e e e e e e e abb b e e e e e e e e e e nnnebeees 26
3.3 System CONtEXE CrEdENTIAIS. e e e 27
G0 T T Moo o [[0 [@0] 0] (=0 A =)V TSRS 27
3.3.2 CONEXE SYSTEIM KEYS ...ttt ettt e e et e e e s e e e e e e anenee s 28
3.4 Administration Board constitution and registrationcouueieeiieie i 29
3.4.1 Administration Board CONSHIULIONcoiiiiiiiiiiiiiiiie e 29
3.4.2 Administration Board regiStrationocoiieeieiiiieie it 30
3.5 Control Components CredentialSooo i e s 31
3.5.1 Control COMPONENT CA ...ttt e et et e e e e e et e e e e e e e aaanbebeeeeeaeeeaanneeeeees 31
3.5.2 Control Components LOGQING KEBYS......uuiiiiiiiiiiiiiie e e ettt s et e e e e e e e e e e eenanaeees 31
3.5.3 Control Component ENCryption KEYSuiiiiiiiiiiiiiiiee et e et a e 32
4 Election configuration ProCeSScvvivviiiiiieeieeiiie e e e 33
4.1 [N] 7= 11T o OSSPSR 34
4.2 Create EIECHON BEVENT ettt e e e e e e e e e e e s eeaaae s 45
4.2.1 Generation of local Certification AUtNOFTIES (CA)eueiiiiiiiiiiiie e 46
4.2.2 Selection of encryption parameters and voting option values generation..............cccccccceeues 48
4.2.3 Generation of Control Components SigNING KEYS......cueieeiiiiiiiiiieeee e ceciiieee e 48
4.2.4 Generation of Authentication Context INfOrmationccccvveeei e 49
4.2.5 Generation of Election Information Context Informationcccceeeveiiiiiiiieee e 50
4.2.6 Generation of Voting Workflow Context INformation ... 50
4.3 CrEALE BAIIOL ... eeiiiieee ittt e ettt et e e e e et e e e e e e e e et e e e e e e e e e eeaaeeas 50
4.3.1 Assignation of vOting OPtioN VAIUESeoiiiiiiiiiiiiiie et e e 51
4.3.2 Assignation of attributes t0 VOtING OPLIONScooiuiiiiiiiiie e 54
4.4 Create BallOt BOXESuiiiiiiiiiiiiiiee ettt ettt e e ettt e e et e e e st e e s bbb e e e s bt et e e anbte e e e nneeeas 55
4.5 Create EIECHON KBY ...ttt e e e s e e e e e e e e s s st e e e e e e e s e nnneraneeaeens 57
4.5.1 Create Electoral Board AUtNOTITYcc.uuiiiiiie it e e e e e e e e r e e e e e e ennes 57
4.5.2 Create Control Components MiXiNG KEY........cocuuiiiiiiiiieiiiie et 58
www.scytl.com

___| . O

Scytl sVote
Protocol Specifications

4.5.3 CoNnSttULe EIECHON KEY ...ttt e e e e s e e e e e e e enees 58
4.6 Protocol Setup algorithimc..uuiiiiecec e e e a e e e e 60
4.6.1 Generate SDM enCryption KEY Pueeiiiieaiiiiiiiieieeee ettt e e e et e e e e e ssbe e e eae e e e anees 62
4.6.2 Generate Verification Card SEt DAtaA...........ueeiiiiiieiiiiiee i 62
4.6.3 Create VOtNG Card SeLcccuuiiiiiieeiiiiiiie et e e s e e e e e s s et e e e e e e s e aenanreeaeeeeeeanns 63
Y € YA ST= U o PSR PTPR 74
4.7 Create printing INFOIMALIONueiiii e e e naeee s 75
4.7.1 Printing Information if extended authentication iS USed............cccceviiiiieiiiiiie e 75
4.8 Generation of Vote Verification Context INformation ..o 75
4.9 Generation of Voter Materials Context INfOrmation ... 76
4.10 Generation of Extended Authentication Context INfOrmationccceveeiieeiiiiiiiiieeee e 77
I R == 11 LYo o o (] (Yo 1 o1 o SRS 77
4,12 Administration Board signature at configuration...............cccvvuriiieeeiiiiiiiiee e 78
4.12.1 Administration Board private Key reCoNSIUCHIONccuuvviiiiiiieiiiiiie e 78
o D - - B (o 1= [0 | PO TP P PP PPPRN 78
4.13 Administration Board signature verification at configurationcccccceeiiiiiiiiinee e, 79
5 VOUNG PRASE ..o 79
5.1 Protocol GetID algorithim ... e e e e e e e e e e e e 81
5.2 0 11 1= 1 = Vo o RS 83
5.2.1 Challenge-response MECNANISIMoiuuiiiiiiiiiee ittt e e e e e neeees 83
5.2.2 Authentication TOKEN gENETALION.ciiuiiiiiiiiiiee ittt e e e aeneee s 85
5.3 Protocol GetKey algorithm...........ooiiiiiii e 87
5.4 S T=T o I o) = TP URT TP 87
5.4.1 Protocol CreateVote algorithmooiiii i 87
5.4.2 Protocol ProcessVote algorithimooiiiiiiiiiiec e 91
5.4.3 Protocol CreateCC algorithMi.........ccuiiiiiiee e 94
5.4.4 Protocol CreateRC algOrithm........cueiiiiiiiiii i 97
5.4.5 Generate receipt and SIOrE VOLEciiiiiiiiiiiiiiie e 98
5.5 Protocol GEICC @lgOItNM.....c..uiiiiiiiiie e e e 99
5.6 LO70] o111 4 1= R/ | £ RSP 99
5.6.1 Protocol Confirm algorithim ..o 99
5.6.2 Protocol ProcessConfirm algorithmcooo e 100
5.7 Client-side receipt Validation............uuiiiie i e e e e e e e s s rreeae s 104
5.8 Request Vote Cast Return Code and RECEIPL.......ccvviiiiieei i 105
6 CoUNtING PRASE. ... 106
6.1 Protocol Tally @lgOrithm ...t e e e e e e e e e enaes 106
L0 I O O 1= T 1] T TR SUOTPUPRRPTR 107
6.1.2 MiXiNg and DECTYPLIONuuiiiieiee e e e ittt e e e e e e e e e e e s e e e e e e e s s et re e e e e e e s s sssnbraeaeeeeeaeanns 107
www.scytl.com

___| T £

Scytl sVote
Protocol Specifications

6.2 BallOt BOX EXPOIT «...eeeeeieteee ettt e ettt e e e e e e ettt et e e e e e e e e nbbbe e e e e e e e e aannbnbeeaaaeeaeannn 118
7 Audit phase (VerifyTally algorithm)ccccoooiiiiiiiii e, 120
8 RETEIENCES ..o e 122
O APPENAIX ettt eaaa 123
9.1 CryptographiC PrIMILIVESooi ittt e e e et e e e e e e s e annbeeeeaae s 123
(S IR T = Ay AN (=) VA o= U o 1= L= = L1 o I PRSRR 123
9.1.2 ElGamal Key pair gENEIAtiON..........cccuviiiiiiee e e e ittt e e e e et e e e e s s st e e e e e e s s snnbraraeeeeeaeannns 123
9.1.3 X509 certifiCate geNETALIONciiiiiiiie ittt e e 123
9.1.4 SChNOIT PrOOf GENEIALIONciutiiiiiiiti ittt e e 125
9.1.5 Exponentiation Proof ENEIALION.ciiuiiieiiiii ettt 126
9.1.6 Plaintext Equality proof gENEIatiONciiiiiiiiiiiiie et 126
9.1.7 MiXiNg ProOf GENEIALIONuuiiiiiiiie ittt ettt e ettt e e e e e e e e e e e e e e e aanbrareeeeeeaaannes 128
9.1.8 Decryption Proof ENEIALIONccoi ittt e e e e e e e e e e e e e anaes 134
9.1.9 Shamir Threshold Secret Sharing split algorithm ..o, 135
9.1.10 Shamir Threshold Secret Sharing reconstruction algorithm............ccccociiiiiiiiin 136
9.1.11 RaNdOM VAIUE GENETALIONoiiiiiiiieiiiiie ettt e et e e st e e e e e e 136
9.1.12 EIGAMAl ENCIYPLON ...ttt e et e e 137
9.1.13 EIGAMAl AECTYPLON ...ttt ettt 137
9.1.14 Maurer’s Unified ProofS PrOVELccccccuiiiiiiieeiecie e 138
9.1.15 EIGamal RE-ENCIYPLIONueiiiiiiiiiiiiiiiie ettt ettt e e e e e et e e e e e e e e annbeaeeeaaeeaeannes 139
9.1.16 ElGamal ciphertexXts permutationcccociiuiiiiiieeeiiiiiiie e e e e e are e e e e e e 140
9.1.17 Permutation gENEIALIONccciiiiiiitiei e e e e e et e e e e e st e e e e e e s s et e e e e e e e s sanbraeaeaeeeaeanns 140
9.1.18 SYMMELriC KEY GENETALIONeiiiiiiiieiiiiie ittt e st e e e e e 140
9.1.19 Message Authentication Code genErationccooeuiiieiiiiiie i 141
9.1.20 Key Derivation Function: KDF1 SPeCifiCationcccoveiiiiiiiiiiiiie e 141
9.1.21 Password-based key derivation fUNCHON...........ccuiiiiiiiieii e 142
9.1.22 HASN GENEIALION ..ociiiiieeeeie ettt e e e ettt e e e e e e e e e e e e e e e anne 142
9.1.23 Digital SIgNature geNEIAtIONueeiieiiee ettt e et e e e e et e e e e e e e e anbeaeeeaeeeaaannes 143
9.1.24 SYMMELIIC ENCIYPLON ...ttt e et e e e e e e e e e e e et e e e e e e s s snanbraeaeaeeeaeaans 143
9.1.25 SYMMELIC AECIYPLON ...eiiiiiiee ettt e e e e e e e e e e e e e s aeaeeeeesaaaes 143
9.1.26 Group element GENEIALIONocuuiii e 144
9.1.27 COMMItMENT GENEIALION ...vvviieeeesiiiiiiiiie e e e e s st e e e e e e e e st e e e e e e s e st e e e eeeeeeassbrnneeeeeeananns 144
9.1.28 Multi-exponentiation argUMENTcuuiiiiiiiie i 145
9.1.29 ProdUCT @rQUIMENT ... iieieeiiee e ettt e ettt et e e e e ettt et e e e e e e s nnbebeeeeaaeeeannbsneeaaaeaaaannn 148
9.1.30 Hadamard prodUCt argUIMENT.............eeiiiiiiiiitiiiiiea e e ettt et e e e e e e st e e e e e e e e annbeneeaaaeeaeannes 149
LS IR R =T (o Jr= 1 {0 [U] [T o L PSPPSRI 153
9.1.32 Single value produCt argUMENT..........cuiieeiiiiiiiiiie i e e e e e e e e e e e e e s r e e e e e e s srab e e eeeeeaeaans 157
www.scytl.com

___| I .

Scytl sVote

Protocol Specifications

9.2 Optimizations at the voting client context in the voting phase..........ccccccoiviiiiiiiiniiiiee, 159

9.2.1 Pre-computation at the Voting CHENt...........cooiiiiiiiiiiiee e e 159

9.3 EV Solution Intellectual Property Rights Notice (the NOLICE).........ccceiiiiiiiiiiiiiiiiiiiiiieeeeee 161

.31 DFINITIONS ..tttk 161

1S IR T O o] o) Y/ o | 01 A 1] 1T = PSR 162
www.scytl.com

___| I O

Scytl sVote
Protocol Specifications

List of figures

Figure 1 - Overview of the voting system components and communication channels 11
Figure 2 - Detailed view of the voting system modules and their interactionsccccoccvvvivveeeenninns 16
Figure 3 - System certificate NErarChYcueiiiiiiiii e 18
Figure 4 - Platform Root constitution and regiStrationcc.cooiieieiiiiiie e 25
Figure 5 - Tenant constitution and regiStration..............cueiiiiiieieiiiee e 26
Figure 6 - System Context credentialS geNEratioNcciiiiriiiiiiiiee e 27
Figure 7 - Administration Board constitution and regisStrationcccueeeiiioiiiiiiiiee e 29
Figure 8 - Control Component Constitution and RegiStrationcccuuvveiiiiaiiiiiiiiiiee e 31
Figure 9 - Election configuration PhaSe OVEIVIEWcccuviiiiiiiei it e e setee e e e e e e ssiaree e e e e e 34
Figure 10 - Create EIECHON EVENTviiiiiiic et s e e e e e e et e e e e e e e s reeeeeeeeeannns 45
Figure 11 - Election Event certificate Nierarchy ... 46
Figure 12 - Control Components Election Event certificate hierarchycccccoviiiiiiiniiice, 46
Figure 13 - Create EICHON KEYui ittt 57
Figure 14 - EIection K&Y gENEIATION..........uiiiiiiiiiiiee ittt e ettt e e e e e e e e e e e e e e e anaes 57
Figure 15 - Protocol Setup algorithm...........ooo e 60
FIGUre 16 - ProtOCOI GELID.......uiiiiee it e e e e e e e e et e e e e e e ss bt eeaeaeeesnnnbnreeeeeeeaeanns 81
FIgure 17 - AUNENTICALIONuveiiiii et e e e e e e e e e e e e e e s et eeaeaeessnnntareeraeeeeeanns 83
Figure 18 - ProtoCOl Creat@VOtE.cciiieiii ettt e st e et e e s bt e e s neae s 87
Figure 19 - ProtoCOl PrOCESSVOLEccoiiiiiiiiiiiie ittt e st e e s 91
Figure 20 - ProtoCOl Creat@CCuuiiiiiiiiii ittt et e et e e s 94
Figure 21 - ProtoCOl CreatERCoiiiiiiiii ittt ettt e e s 97
Figure 22 - ProtoCOI CONFIIMeiiiiiiie ettt e e e e et e e e e e e e e snnbe b e e eaeaeeeannes 99
Figure 23 - ProtoCol ProCeSSCONTIMMciiiiiiiiiiiiiiie ettt e e e e e e e e anees 100
Figure 24 - Counting PhaSE OVEIVIEW.......cccciiiiiiiiiieee e e e e e sttt e e e e s e et e e e e e e s et e e e e e e e s snnbaanaraeeeaeannes 106
www.scytl.com

___| S |

Scytl sVote
Protocol Specifications

List of tables

Table 1 - Mapping between components in the protocol and in the VEIeS Swiss regulation................ 17
Table 2 - System KEYS NOTALIONuviiiiei e e e s e e e e e e e e s et r e e e e e s ennnnreees 25
Table 3 - VariableS NOTALION.ii e e e e e e e s e s e e e e e e s e nsenbeeeeeeeeeannenneees 35
I o] L= Yo 1 1= g [[T o 1= SRS 35
Table 5 - EleCtioN IHENTITIEIS ...ccii ittt e e e e ettt e e e e e e e et e e e e e e e e aneneeees 35
TabIe 6 - COUES NOLALIONeuiiiieeiiiiiti et e e ettt e e e e e e et et eeae e e e e s s bbe et e e aeeeaaansnbeeeeeaeeeaanneneeees 36
Table 7 - Election CA KEYS NOTALIONccuiiiiiiiiiiiiie ettt e e e e e e e e e e nbeeeees 37
Table 8 - EleCtion KEYS NOTATIONueiiiiieiiiitiie ittt e e e e e e s e e e e e e s aneeeeees 45
Table 9- AUtheNtiCAtioN VOLEr DALAuieiiiiiieiiiiie ettt e et e e et e e s snbee e e e snbeeee e e 49
Table 10 - Authentication CONEXE DALAeiiiiiiiieiiiiie e e e e e e e e sbeeee e 50
Table 11 - Election Information CONEXt DALAcvveeeeiiiiiiiiiiiie e e e e e e e e s nneneeees 50
Table 12 - Voting WOrkflow CONtEXt DAta.ccoiueiiiiiiiiieiiiiie e 50
BLIE= Lo L= S = - 1 o) PSSR 54
Table 14 - Ballot BOX INTOMMEALIONueiiiiiiiiiiie e e e e e e e e e e e b 56
Table 15 - Ballot BOX CONIEXE DALAciiieiiiiiiiiiit ettt e e e e e bbb e e e e e e e s enbeeeees 56
Table 16 - Ballot BOX VOB DALAcuueiiiiiiiieiiiiie ettt e et e e et e e st e e e e snbeeeee e 56
Table 17 - Electoral AUTNOIILY DALAccceeeiiiiiiiiiieee e s e e e e e e e e r e e e e e e s enrnreees 58
Table 18 - EICHON KEY DALA........ueiiiiiiiiiie ittt e e et e e e st e e e st e e e e snbeeeeeans 59
Table 19 - Keys and identifiers generated by the SDM during the Setup algorithmccccccooeeees 61
Table 20 - Keys and identifiers generated by the CCRj during the Setup algorithm...........cccccoveees 62
I o] (= R OF = To [T o 1= | = = RS 65
Table 22 - Verification Card Datal..........uuieeeiiiiiiiiiiiee e e st e e s e e e e e s s s breeeeaee e s s nnnnreeeeeeeeeanneneeees 67
Table 23 - Verification Card COUESouiii it e aneeeeees 74
Table 24 - Verification Card Set Control COmMpPONENt DALAeeeeiiiiiieiiiiieei e 75
Table 25 - Verification Card SEt Datal.........coiiuuiiiiiiaeai it e e e e e e e s 76
Table 26 - Codes Mapping Table CoNteXt Datal........c..iiueiiiiiieaeiiiiiiee et 76
Table 27 - Vote Verification CONEXt DALA..........ccuuiiiiiiiiie it e e sbeeee e 76
Table 28 - VOter INfOrMELION.........ueiiii ettt e e st e e e st e e e snteeeeesnbeeeeeans 77
Table 29 - Extended AuthentiCation Data.............uueeeeeiiiiiiiiiieee e e e e e s e srerr e e e e e s s re e e e e e s nnnneeees 77
LI Lo] LT I = = 1o o) SRS 119
www.scytl.com

___| T O

Scytl sVote
Protocol Specifications

1 Introduction

This document gives a detailed description of the cryptographic protocol implemented in Scytl sVote.
The protocol provides end-to-end encryption, vote secrecy and both individual and universal

verifiability to the product.

e Individual verifiability is accomplished by sending to the voter a Choice Return Code for each
possible voting option the voter has selected during the voting process. These Choice Return
Codes are calculated and returned to the voter by the voting server using the encrypted vote
sent by the voter and without decrypting the vote. If the voter agrees with the Choice Return
Codes! (with the assistance of a voting card), sends a ballot confirmation key (Ballot Casting
Key). The server verifies the Ballot Casting Key an if it is correct, calculates the corresponding
Vote Cast Return Code that confirm to the voter that the confirmed vote is included in the Ballot

Box.

e Universal verifiability is achieved using a set of independent components named Control
Components. The use of these independent components to achieve universal verifiability is a
specific proposal made by the Swiss Federal Chancellery in the Electronic Voting Ordinance
(VEleS) [1] [2].

This approach is based on a trust model in which the privacy and auditability of the election is not based
on the trustworthiness of the voting client or voting servers components, but on the trustworthiness of

at least one control component within a group of control components.

Furthermore, the individual verifiable proof should also allow voters to ensure that the universal
verifiability mechanism considers their votes (e.g., the Choice Return Codes should be generated by

Control Components).

The document describes a voting system in which voters can choose among pre-defined options. In
case the voter cast a vote with a write-in, the individual verification process only confirms the presence
of a write-in in the vote, but it does not prove the write-in value. The rest of the protocol properties are

preserved in this case.
1.1 Document organization
This document is organized as follows:
e Section 1: Introduction. This section is a short introduction to the protocol and the trust model.

e Section 2: Solution overview. This section is a summary of the general solution with all the

involved components.

1In some parts of the sVote code, this concept might be referred to as “Return Code” instead of “Choice Return
Code

www.scytl.com

- e O

Scytl sVote
Protocol Specifications

e Section 3: System configuration process. This section also defines the system certificate
hierarchy and outlines the steps required for certificates generation. These are the certificates

used by the voting system that are shared among different election events.

e Section 4: Election configuration process. This section defines the data, keys and
credentials that are specific for each election and how they are generated. It includes the
generation of the keys relevant for the individual verification functionality of the protocol, and
the keys relevant for the complete verification functionality. At the beginning of this section,
there are some tables that summarize the notation regarding keys and variables introduced

throughout the section and used along the document.

e Section 5: Voting phase. This section explains the different steps of the voting phase:

(authentication, send a vote and confirm a vote) and the algorithms involved in them.

e Section 6: Counting phase. This section describes all the activities performed during the
counting process (Cleansing, Mixing and Decryption) with special focus on the Ballot Box export

process.
e Section 7: Audit phase. This section specifies how to audit the election process.

e Section 8: References. This section specifies the literature used as a reference throughout the
document.

e Section 9: Appendix. This section details the pre-computations that can be done both in the
voting client and during configuration to reduce the time needed to cast a vote. It also describes
all the cryptographic primitives used by the voting protocol. Throughout the document these

primitives are referenced when needed.

www.scytl.com
__| T 10

2 Solution overview

Scytl sVote
Protocol Specifications

The following diagram is an overview of the components involved in the voting system and the

communication channels established between them:

Verifier Bulletin Board

»

Control Components

\

[E
T

Printing Office \ H
M

Election
Administration

)

Voting
Card

Voting Server

Voter

Voting Client

Figure 1 - Overview of the voting system components and communication channels

Each of these components is defined as follows:

keys and codes to vote and verify his/her vote.

Voting Client: This is the device used by the voter to cast

named as Client Context in the protocol description.

Voter: Is the user of the system. Prior to the election, the voter receives a Voting Card with the

his/her vote. This component is also

Voting Server: It authenticates the voter and receives, processes and stores in the Ballot Box

the votes cast by the voter. From an architectural point of view, the voting server is implemented

using different contexts. Each one of these contexts is in charge of executing a different part of

the protocol:

o Voting Workflow Context: Receives and manages client requests, contains the possible
workflows per different Election Events and stores the status of the vote.

o Extended Authentication Context: Participates in the first steps of the authentication
process in case the system requires additional authentication values to start voting.

o Authentication Context: Authenticates the voter in the system and performs

authentication token validation.

www.scytl.com
__|

11

Scytl sVote
Protocol Specifications

o Election Information Context: Stores the election information and the whole Ballot Box

and performs vote and confirmation validations.

o Vote Verification Context: Performs vote validations, stores the Choice Return Codes

and the Vote Cast Return Code and retrieves them when requested.
o Voter Material Context: Stores voter related materials.

The Voting Server also hosts the following election configuration and management modules for

the Election administrators not accessible to voters:

o Administration Portal performs non-cryptographic operations (configure the ballot,
define the Electoral Board members, etc.) and is used to introduce the election
configuration information such as the election name, election calendar, candidates,

electoral roll, etc.

o Election Configuration Services interact with the Administration Portal, the Print Office
domain and the Control Components domain during the configuration phase. They
provide election information to all the components of the different domains and facilitate
the communication between the Print Office and the Control Components domains for
generating the election cryptographic-related information. The Election Configuration
Services use the Secure Data Manager (SDM online) software component to implement

the above-mentioned functionalities.
e Control Components (CC): According to the VEIeS annex [2], they can be implemented as:

o A group of people: People are considered only for protecting voter privacy during the
vote decryption process. In this case, it is possible to set up a group of at least 4 people
for keeping in smartcards the shares of the secret key.

o Standard computers: At least 4 computers with different Operating Systems to ensure
that they do not share a common threat.

o Hardware Security Modules: At least 2 HSM? from different vendors with Common
Criteria Evaluation Assurance level 4 (CC EAL4) or the level 3 certification of the
Federal Information Processing Standard (FIPS) Publication 140-2. Control
Components can be combined in one or more groups. All the Control Components in a
group should collaborate to perform their assigned voting protocol function and any
attempt to abuse the system should always be detected if at least one component of

the group is honest.

2 A hardware security module (HSM) is a physical computing device that safeguards and manages digital
keys for strong authentication and provides crypto processing.

www.scytl.com
__| T 12

Scytl sVote
Protocol Specifications

The approach presented in this document considers standard computers and distinguishes

between two types of Control Components:

o Choice Return Codes Control Components (CCR): They implement the generation of
the Choice Return Codes and the Vote Cast Return Code but using a distributed
approach. These components work in parallel and the results of their cryptographic
operations are combined to obtain the final Choice Return Codes and Vote Cast Return
Code.

o Mixing Control Components (CCM): These Control Components implement the
shuffling and decryption of the votes during the counting process and are also involved
in the generation of the election key. By design, a mixing can be implemented using
several Mix-nodes to shuffle and transform (re-encrypt) the votes in sequence, the
approach is based on implementing these mix-nodes using 4 Control Components.
With the aim of distributing the decryption process across them, each mix-node
performs a partial decryption in addition to shuffle and re-encryption. Additionally, the
last mix-node (CCM,) decrypts the votes after mixing using an Electoral Board key
reconstructed using a secret sharing scheme. Only the first three nodes (CCM,, CCM,,
CCM,;) partially decrypt the votes using its own partial decryption key that does not need

to be reconstructed.

The last Mixing node (CCM,) also needs to interact with the Key Reconstruction module to
reconstruct the Election Administrators keys that allow partial decryption and digitally signing of

the information managed by this Control Component:

o Key Reconstruction reconstructs the election keys required for protecting the integrity
of the election information (Administration Board key) and the privacy of the votes
(Electoral Authority key). The reconstruction is done from the shares provided by the
members of the Board that custodies the keys. This module uses the software
component called offline Secure Data Manager for performing the secret sharing

scheme that reconstructs the key.

e Print Office: It is responsible for generating, printing and delivering the voting cards to the
voters as well as for generating the required election keys. The generation is done in physically

isolated infrastructure by the following modules.

o Voting Card Generation is used to generate the voter’s credentials (Voting Cards)

interacting indirectly (through the Voting Server) with the Control Components.

o Election Keys Generation generates the election keys required for protecting the
integrity of the election configuration information (Administration Board key), the privacy
of the votes (Electoral Board Authority key) and the integrity of the information

generated and used during the voting phase (Authentication Token, Receipt, etc). The

www.scytl.com
__| T 13

Scytl sVote
Protocol Specifications

Administration Board key and the Electoral Board Authority key are generated using a

secret sharing scheme.

Both modules use the software component called offline Secure Data Manager (SDM).

e Election Administrators: They are responsible for generating the election configuration,

verifying it, computing the results and publishing them. We distinguish between:

O

O

Administration Portal role that performs non-cryptographic operations (configure the

ballot, define the Electoral Board members, etc.)

Administration Board Authority that uses the offine SDM from the Election Keys
Generation module in the Print Office component, generates all the cryptographic
information to ensure the integrity and security of the voting process. The Administration
Board is also used from the Key Reconstruction by the last Control Component. This
authority owns a digital signature key pair whose private key is shared among the Board
members and is used to sign both the configuration and the results of the last Control

Component execution.

Electoral Board Authority using the Election Keys Generation module in the Print Office
component, generates all the cryptographic information to privacy of the voting process
(i.e., the election keys). This entity owns a key pair whose private key is shared among
the Board members and is used to partially decrypt the votes in the last Control

Component execution.

e Global Bulletin Board (Audit System): It is the global repository used to store all the audit

information from the different modules that will be required to verify the election process. It

stores election configuration, votes, confirmations and keeps track of all the actions performed

by each entity. The Bulletin Board is implemented as a distributed system, meaning that the

information stored in it comes from different sources (local Bulletin Board) and repositories

(¢]

www.scytl.com

The Ballot Box where the encrypted votes and their proofs are stored. Voting Server
and Control Components are keeping a local Ballot Box of all the votes that are
processed by the solution.

The Secure Logger that registers all the actions that takes place in each entity by
producing immutable logs that are protected by means of cryptographic mechanisms,
ensuring that nobody can manipulate the entries stored in the log without being
detected. The information stored in the log could be used to recognize any
inconsistency in the votes cast and recorded in the Ballot Box. All the components of

the solution have a Secure Logger of the transactions.

The folder structure (named offline Secure Data Manager) created after the execution
of the Voting Card Generation and Election Keys Generation modules in the Print Office

component, where all the election configuration is stored signed by the Administration

___| T 14

Scytl sVote
Protocol Specifications

Board. The initial folder structure and contents are provided by the Administration Portal
and Election Configuration Services modules of the Voting Server. The Print Office
completes the contents of this folder with the generated election keys, and digitally signs
it.

e Verifier: It is the component used to verify the correctness of the entire election process, the

integrity of the data processed through different voting system components, and that these

processes are accurate and fair. Using the information stored in the global Bulletin Board, the

Verifier:

Ensures that the configuration sealed (digitally signed) by the Print Office using the
Voting Card Generation and the Election Keys Generation, is the configuration used

during the voting phase and that has not been altered after it has been signed.
Ensures that the behaviour of each component is the expected one.

Ensures that all the encrypted votes present in the Ballot Box correspond to the

encrypted votes cast by legitimate voters during the voting phase.

Ensures that all the encrypted votes present in the Ballot Box correspond to votes that
have been validated by the voters and processed by the Control Components.

Ensures that no votes processed by the Control Components have been deleted from
Ballot Box.

Ensures that all the content of the valid encrypted votes that are present in the Ballot

Box at the end of the voting phase are part of the tally.

Itis also important that all these verification processes are carried out without compromising the

privacy of any voter. The details of the verifier are available in [3].

The Secure Data Manager (SDM) has been mentioned several times in the modules description, but it

must not be identified as an architectural module of the voting system protocol. The SDM is a software

component that provides the required cryptographic protocol operations to the modules. Therefore, it is

not a standalone module that receives calls from other modules, but a software component

implementing the cryptographic parts of the protocol used for election configuration set-up and secret-

sharing key management.

When the SDM is called inside a module deployed in an isolated environment (e.g., Voting Card

Generation), it is taken that it uses the SDM offline functionalities. Otherwise, it is considered that the

module calls the SDM online functionalities that facilitates the communication with modules that are
calling the SDM offline.

www.scytl.com

___| e 1 5

Scytl sVote
Protocol Specifications

e-VOTING TOE

CONFIGURATION — Print Office
CONFIGURATION - Voting System
Election Keys Voting Card Printer
s Generation (SDM Generation (SDM
offline) offline)

Administration ﬁ Election Configuration ! CONFIGURATION - Control Components

Services (SDM online)

CCR1 II CCR2 |I CCM1 II CCM2 I
d—p |

| CCR3 II CCR4 | I CCm3 Il CCM4 |
-—em mm omm omm omm e e e o o o Em Em Em Em Em Em Em Em Em Em Em == =
VOTING - Voting VOTING - Control Components
System
Voting Workflow
Sontext CCRI Audit
- System
Authentication (Global
Context CCR2 Bulletin Verfier
Board)
Vote Verification ﬁ
Context <= CCR3
Voter Material CCR4
Voter Platform Client Context Context

Election Information
Context

COUNTING — Canton COUTING - Control Components

|g | CcCM4 I Key Reconstruction e | comi | | com2 | | coM3 I
Settlement ! (SDM offline)

Figure 2 - Detailed view of the voting system modules and their interactions

As shown in Figure 2, the modules previously defined, interact during the voting protocol and assume

the following phases:

Configuration: This phase takes care of those activities related to the system and election
configuration and provides all the data that will be required by other modules during the election,
including codes, certificates, keys and passwords. The codes the voter will use when voting
(Start Voting Key, Ballot Casting Key, Vote Cast Return Code and Choice Return Codes for
each voting option) need to be sent to each voter before the election starts. The components
involved in this phase are the Print Office, the Voting Server, the Control Components and the

Election Administration.

Voting: During the voting phase, voters access the voting application using their credentials,
then they are presented with their ballot, select their option (s) and cast their vote. This phase
needs the interaction between the voter, the Voting Client, the Voting Server and the Control

Components.

Counting: It comprises the modules for Cleansing, Mixing and Decryption of votes. The tallying

is not considered as part of the solution and it is expected to be performed by the authorities.

o Cleansing: Its main task is to validate votes in the Ballot Box before Mixing. Confirmed
votes are kept in a cleansed Ballot Box without any reference to the voter (no Voting

Card ID (vcd;4) and no signature) so they cannot be traced back when decrypted. This

www.scytl.com
__| T 16

Scytl sVote
Protocol Specifications

process is done by the Voting Server and can be repeated by the auditors during the

verification phase.

o Mixing and Decryption: These processes are executed sequentially in each Control
Component. The mixing process performs a shuffle and re-encryption on the votes to
break the link between the votes as they were stored in the Ballot Box (which can be
traced to the Voting Card IDs) and the votes to be decrypted. The decryption computed
by the Control Components is indeed a partial decryption since the votes are not fully
decrypted unless all the Control Components participate in the process. The three first
Control Components CCM,, CCM, and CCM; partially decrypt their votes using their

own CCM; Mixing private key (x;). However, the last partial decryption performed in

CCM, uses the reconstructed Electoral Board private key (EBg). In this last Control

Component CCM,the Administration Board key is also reconstructed to sign its outputs.

2.1 Mapping solution to VEIeS Swiss regulation

Protocol VEleS Swiss regulation Trust assumption

Voters Voters Significant proportion of voters are non-
trustworthy

Voting Client User platform Untrustworthy for individual and complete

verifiability, trustworthy for privacy

Voting Card Trusted technical aids for ~ Trustworthy
voters
Voting Server System (server-side) Untrustworthy
Print Office (offline Print Office Trustworthy
SDM)
Return Codes Control Control Components Trustworthy only as the whole. At least one
Components (CCRs) is honest.

and Mixing Control

Components (CCMs)

Auditors Auditors At least one is trustworthy
Verifier Auditor’s technical aid At least one honest auditor has a
trustworthy aid

Table 1 - Mapping between components in the protocol and in the VEIeS Swiss regulation

Table 1 maps the solution modules with those in the VEIeS Swiss regulation. This table also shows the
trust assumptions defined by the VEleS regulation that must be ensured by the equivalent module in
the proposed voting system. These trust assumptions are considered in the design of the voting system

www.scytl.com
__| T 17

Scytl sVote
Protocol Specifications

and components, which are trustworthy and designed to be deployed in isolated environments (e.g.,
using the SDM offline functionalities).

3 System configuration process

During the system configuration process, all the information unrelated to a specific Election Event will

be created. The following schema defines the certificate hierarchy of the system configuration.

Platform
Root CA

Tenant
Auhorities
CA

Control
Component
CCR; CA

Control
Component
CCR, CA

Control
Component
CCM; CA

Control
Component
CCM; CA

_AB e AB . CCR, Logging CCR4 Logging CCM,; Logging CCM; Logging
Certificate_1 Certificate_i Encryption Cert. Encryption Cert. Encryption Cert. Encryption Cert.
CCR, Logging e CCR, Logging CCM, Logging - ccM, Logging
Signing Cert. Signing Cert. Signing Cert. Signing Cert
Tenant Context_1| | Tenant Context_j
System Cert System Cert. CCR; Encryption CCR, Encryption CCM,; Encryption CCM; Encryption
Certificate Certificate Certificate Certificate
Context_1 Logging| , . | Context_j Logging
Encryption Cert. Encryption Cert

Context_1 Logging Context_j Logging
Signing Cert. - Signing Cert.

Figure 3 - System certificate hierarchy

First, a Platform Root CA is created. This Platform Root generates all the Tenant Certificates for those
Tenants that want to run an election and issues the Tenant CA Certificate.

For each Tenant and each Context of the electronic voting system, the following certificates are
generated:

e System certificates

e Logging signing certificates

e Logging encryption certificates
The system key pair is used to encrypt/decrypt the election KeyStore passwords for each context.
The logging signing and encryption key pairs are needed to run the Secure Logs application.

Once a Tenant is registered, it can certify Administration Boards which can digitally sign valid
configurations and election results.

www.scytl.com

1 e 13

Scytl sVote
Protocol Specifications

The first approach is to generate all the Tenant and Platform configuration information using two
command line tools known as Customer Administrator Tools (CATSs). These tools allow the creation of
credentials for platforms and tenants, as well as the system credentials for an election. Additionally, the

CATs allow installing the configuration on the services that will need it to run an election.

In addition, the Platform Root also issues certificates for the Control Components. For each one of them
(CCR;,CCR,,CCR4,CCR,,CCM,,CCM,, CCMy) it generates a Control Component CA that issues the

following certificates:
e Encryption certificate
e Logging signing certificate
e Logging encryption certificate

The encryption key pair is used to encrypt/decrypt the passwords of the KeyStores that contain the
election private keys, and the logging signing and encryption key pairs needed to run the SecurelLog

application.

Note: These keys are unique per Control Component (CC) but shared among all Tenants certified by
the Platform Root.

Key Variable Owner Meaning ‘
Platform Root CA PRCAg, Platform This RSA private key is used to issue the
private key Tenant CA, the Control Component CCR;

CAs, the Control Component CCM; CAs, the
CCR; Logging encryption, the CCR; Logging
signing, the CCM; Logging encryption, the
CCM; Logging signing, the CCR; encryption,
the CCM; encryption, the Tenant Context
System, the Context Logging Encryption and
the Context Logging Signing certificates.
Platform Root CA PRCAp, Platform This RSA public key is used to verify the
public key Tenant CA, the Control Component CCR;

CAs, the Control Component CCM; CAs, the
CCR; Logging encryption, the CCR; Logging
signing, the CCM; Logging encryption, the
CCM; Logging signing, the CCR; encryption,
the CCM; encryption, the Tenant Context
System, the Context Logging Encryption and

the Context Logging Signing certificates.

www.scytl.com
__| T 19

Scytl sVote
Protocol Specifications

Key Variable Owner Meaning ‘

Tenant CA private TCAg, Tenant This RSA private key is used to issue the

key Administration Board certificate.

Tenant CA public TCApk Tenant This RSA public key is used to validate the

key Administration Board certificate.

CCR; CA private CCRCAik CCR; This RSA private key is used to issue the

key CCR; signing certificate.

CCR; CA public CCRCA{ak CCR; This RSA public key is used to validate the

key CCR; signing certificate.

CCRj Logging CCRlogz;f CCR; This RSA private key is used to decrypt the

Encryption private symmetric keys that are used to compute the

key CCR; Secure Log checkpoints.

CCRj Logging CCRlogZ’,",f CCR; This RSA public key is used to encrypt the

Encryption public symmetric keys that are used to compute the

key CCR; Secure Log checkpoints.

CCRj Logging CCRlog;',‘f CCR; This RSA private key is used to sign the CCR;

Signing private Secure Logs checkpoints.

key

CCR; Logging CCRlogz];‘; CCR; This RSA public key is used to verify the CCR;

Signing public key Secure Logs checkpoints signatures.

CCR; Encryption CCReSjk CCR; This RSA private key is used to decrypt the

private key CCR; Choice Return Code encryption private
key (skccr))s the CCR; Choice Return Code
generation private key (k;) and the CCR;
signing private key (skéCR].).

CCR; Encryption CCRe;k CCR; This RSA public key is used to encrypt the

public key CCR; Choice Return Code encryption private
key (skccr)) the CCR; Choice Return Code
generation private key (k;j) and the CCR;
signing private key (skéCR]_).

CCM; CA private CCMCA;',(CCM; This RSA private key is used to issue the

key CCM; signing certificate.

CCM; CA public CCMCA{;,(CCM; This RSA public key is used to validate the

key

CCM; signing certificate.

www.scytl.com
__|

Scytl sVote
Protocol Specifications

Key Variable Owner Meaning ‘

CCM; Logging CCMlog!,’f CCM; This RSA private key is used to decrypt the

Encryption private symmetric keys that are used to compute the

key CCM; Secure Log checkpoints.

CCM; Logging CCMlogé',f CCM; This RSA public key is used to encrypt the

Encryption public symmetric keys that are used to compute the

key CCM; Secure Log checkpoints.

CCM; Logging CCMlogj,f CCM; This RSA private key is used to sign the CCM;

Signing private Secure Logs checkpoints.

key

CCM; Logging CCMIOQ;{'; CCM; This RSA public key is used to verify the

Signing public key CCM; Secure Logs checkpoints signatures.

CCM; Encryption CCMeSjk CCM; This RSA private key is used to decrypt the

private key CCM; Mixing private key (x;) and the CCM;
signing private key (skgCMj).

CCM; Encryption CCMeék CCM; This RSA public key is used to encrypt the

public key CCM; Mixing private key (x;) and the CCM;
signing private key (skgCM}.).

Administration ABg Administration This RSA private key is used to sign the

Board private key Board election configuration and the counting
results.

Administration AByy Administration ~ This RSA public key is used validate the

Board public key Board election configuration signatures and the
counting results signature.

Tenant TAC Authentication This RSA private key is used to decrypt the

Authentication Context Authentication Token Signer Password.

Context System

private key

Tenant TACyk Authentication ~ This RSA public key is used to encrypt the

Authentication Context Authentication Token Signer Password.

Context System

public key

Tenant Vote TVV Vote This RSA private key is used to decrypt the

Verification Verification Choice Return Codes Encryption KeyStore

Context System Context password and the Codes Secret key

private key

KeyStore password.

www.scytl.com

Scytl sVote

Protocol Specifications

Key Variable Owner Meaning

Tenant Vote TV Vi Vote This RSA public key is used to decrypt the
Verification Verification Choice Return Codes Encryption KeyStore
Context System Context password and the Codes Secret key

public key KeyStore password.

Tenant Election TEI, Election This RSA private key is used to decrypt the
Information Information Ballot Box KeyStore password and the
Context System Context Election Information Signing KeyStore
private key password.

Tenant Election TELyy Election This RSA public key is used to encrypt the
Information Information Ballot Box KeyStore password and the
Context System Context Election Information Signing KeyStore
public key password.

Authentication AClogé, Authentication This RSA private key is used to decrypt the
Context Logging Context symmetric keys that are used to compute the
Encryption private Authentication Context Secure Log

key checkpoints.

Authentication AClogy, Authentication This RSA public key is used to encrypt the
Context Logging Context symmetric keys that are used to compute the
Encryption public Authentication Context Secure Log

key checkpoints.

Authentication AClogs, Authentication This RSA private key is used to sign the
Context Logging Context Authentication Context Secure Logs
Signing private checkpoints.

key

Authentication AClogy, Authentication This RSA public key is used to verify the
Context Logging Context Authentication Context Context Secure Logs
Signing public key checkpoints signatures.

Voting Workflow VWlogé, Voting This RSA private key is used to decrypt the
Context Logging Workflow symmetric keys that are used to compute the
Encryption private Context Voting Workflow Context Secure Log

key checkpoints.

Voting Workflow VWlogy, Voting This RSA public key is used to encrypt the
Context Logging Workflow symmetric keys that are used to compute the
Encryption public Context Voting Workflow Context Secure Log

key

checkpoints.

www.scytl.com
__|

22

Scytl sVote
Protocol Specifications

Key Variable Owner Meaning ‘
Voting Workflow VWlogs, Voting This RSA private key is used to sign the
Context Logging Workflow Voting Workflow Context Secure Logs
Signing private Context checkpoints.

key

Voting Workflow VWlogy, Voting This RSA public key is used to verify the
Context Logging Workflow Voting Workflow Context Secure Logs
Signing public key Context checkpoints signatures.

Vote Verification VViegs, Vote This RSA private key is used to decrypt the
Context Logging Verification symmetric keys that are used to compute the
Encryption private Context Vote Verification Context Secure Log

key checkpoints.

Vote Verification VViogy, Vote This RSA public key is used to encrypt the
Context Logging Verification symmetric keys that are used to compute the
Encryption public Context Vote Verification Context Secure Log

key checkpoints.

Vote Verification VVlegs, Vote This RSA private key is used to sign the Vote
Context Logging Verification Verification Context Secure Logs

Signing private Context checkpoints.

key

Vote Verification VViogy, Vote This RSA public key is used to verify the Vote
Context Logging Verification Verification Context Secure Logs checkpoints
Signing public key Context signatures.

Voter Material VMlogs, Vote Material This RSA private key is used to decrypt the
Context Logging Context symmetric keys that are used to compute the
Encryption private Voter Material Context Secure Log

key checkpoints.

Voter Material VMlogy, Vote Material This RSA public key is used to encrypt the
Context Logging Context symmetric keys that are used to compute the
Encryption public Voter Material Context Secure Log

key checkpoints.

Voter Material VMlogs, Vote Material This RSA private key is used to sign the Voter
Context Logging Context Material Context Secure Logs checkpoints.
Signing private

key

Voter Material VMlogy, Vote Material This RSA public key is used to verify the

Context Logging
Signing public key

Context

Voter Material Context Secure Logs

checkpoints signatures.

www.scytl.com
__|

Scytl sVote

Protocol Specificatio

ns

Key Variable Owner Meaning ‘
Election Ellogé, Election This RSA private key is used to decrypt the
Information Information symmetric keys that are used to compute the
Context Logging Context Election Information Context Secure Log
Encryption private checkpoints.

key

Election Ellog;, Election This RSA public key is used to encrypt the
Information Information symmetric keys that are used to compute the
Context Logging Context Election Information Context Secure Log
Encryption public checkpoints.

key

Election Ellogs, Election This RSA private key is used to sign the
Information Information Election Information Context Secure Logs
Context Logging Context checkpoints.

Signing private

key

Election Ellogy, Election This RSA public key is used to verify the
Information Information Election Information Context Secure Logs
Context Logging Context checkpoints signatures.

Signing public key

Certificate CRlogé, Certificate This RSA private key is used to decrypt the
Registry Context Registry symmetric keys that are used to compute the
Logging Certificate Registry Secure Log checkpoints.
Encryption private

key

Certificate CRlogy, Certificate This RSA public key is used to encrypt the
Registry Context Registry symmetric keys that are used to compute the
Logging Certificate Registry Secure Log checkpoints.
Encryption public

key

Certificate CRlogs, Certificate This RSA private key is used to sign the
Registry Context Registry Certificate Registry Secure Logs checkpoints.
Logging Signing

private key

Certificate CRlogy, Certificate This RSA public key is used to verify the
Registry Context Registry Certificate Registry Secure Logs checkpoints

Logging Signing
public key

signatures.

www.scytl.com
__|

24

Scytl sVote

Protocol Specifications

Key Variable Owner Meaning ‘
Election EIL3, Election This RSA private key is used to sign the
Information Information cleansed ballot box (the input of the first
Signing private Context mixing Control Component).

key

Election ElLy Election This RSA public key is used to verify the
Information Information signature of the cleansed ballot box (the input
Signing public key Context of the first mixing Control Component).

Table 2 - System keys notation

3.1 Platform Root constitution and registration

Password —{ Platform
Command > Platform Root

. Keystore Password
Line Tool

Platform Root Platform Root
X.509 Certificate Keystore

N

Certificate
Registry

Figure 4 - Platform Root constitution and registration

The Platform Command Line Tool is used to generate the Platform Root Credentials.

e Call the RSA Key pair generation primitive and obtain the Platform Root key pair.

e The Platform user is asked to introduce a KeyStore password.

e Call the X509 certificate generation primitive to generate the Platform Root certificate, self-

signed with the private RSA key. The certificate contains the CA name, the validity period and

the certificate name field values.

e The private RSA key is stored into a KeyStore and seal it with the password.

The Platform Root certificate is uploaded to the Certificate Registry and to the contexts. The KeyStore

password is kept by the Platform user to be used to issue tenant and system certificates.

www.scytl.com

25

3.2 Tenant constitution and registration

Scytl sVote
Protocol Specifications

3.21

The Tenant Command Line Tool is used by the Tenant user to generate their credentials:

3.2.2

Platform Root Platform Root
Keystore Keystore Password

| |

Tenant Command
Line Tool
(user Platform)

Vo

Tenant CA Tenant CA
X.509 Certificate Keystore

/

Certificate

Password ——

Tenant Command
Line Tool
(user Tenant)

Tenant CSR
> Tenant CA

Registry

Keystore Password

Figure 5 - Tenant constitution and registration

Tenant constitution

Call the RSA Key pair generation primitive and obtain the Tenant key pair

The Tenant user is asked to introduce a KeyStore password.

A CSR with the public key is generated and sent to the Platform Root (for instance, by

authenticate mail). The CSR contains the tenant identifier in the common name. The validity

period should be configurable.
The private RSA key is stored into a KeyStore and seal it with the password.

The KeyStore and password are kept by the Tenant locally.

Tenant registration

Precondition: The platform host has a CA key pair, constituted by a KeyStore containing the private

key, and a self-signed certificate (containing the public key), which has been installed in the contexts.

The platform host registers the Tenant by issuing the X.509 for the Tenant CA, from the CSR created

in the previous step.

The Command Line Tool requires entering the Platform Root KeyStore password to retrieve the

Platform Root private signing key.

The Platform Host CA calls the X509 certificate generation primitive to generate the Tenant CA

X509 certificate from the existing CSR and using the Platform Host CA private key.

www.scytl.com

e 2

Scytl sVote
Protocol Specifications

e The Tenant CA certificate is uploaded only to the Certificate Registry. The registry checks that
the Tenant CA certificate has been issued by the Platform Host CA.

When the contexts need the Tenant Authorities CA Certificate, they request it from the Certificate
Registry.

3.3 System context credentials

Precondition: The platform host has a CA key pair, constituted by a KeyStore containing the private
key and a certificate, which has been installed in the contexts.

Platform Root Platform Root
Keystore Keystore Password

Context Logging

Encryption Keystore Passwords
Platform
Tenant Contexts

CF’mma”d System Keystore Passwords
Line Tool
Context Logging
\l/ Signing Keystore Passwords
|
I |
Tenant Contexts Contexts Logging Tenant Logging
System Certificates Signing Certificates Encryption Certificates
Tenant Contexts Contexts Logging Tenant Logging
System Keystores Signing Keystores Encryption Keystores

/

Figure 6 - System Context credentials generation

3.3.1 Logging Context Keys

The platform host generates two key pairs for each context to start logging information in a secure way.
One key pair will be used to encrypt and the other to sign.

e Call twice to the RSA Key pair generation primitive and obtain the Logging Context key pairs
o Authentication Context: (AClogg, AClogé,), (AClogsy, AClogs,)
o Voting Workflow Context: (VWlogg,, VWlogs,), (VWlogs,, VWlogs,)
o Voter Material Context: (VMlogg,, VMlogs,), (VMlogs,, VMlogs,)
o Election Information Context: (Ellog,, Ellogé,), (Ellogs,., Ellogs;)

www.scytl.com
__| T 27

Scytl sVote

Protocol Specifications

o Vote Verification Context: (VViogg,, VViogé,), (VViogs,, VViogs,)
o Certificate Registry: (CRlogg,, CRlogS,), (CRlogsy, CRlogs,)

e The Command Line Tool requires entering the Platform Root KeyStore password to retrieve the

Platform Root private signing key (PRCAg).

e Call twice to the X509 certificate generation primitive with the Platform Root CA private key
(PRCA) to Logging Context Signing and Encryption X509 certificates. The certificates should
contain in the “common name”, the name of the context for which they are issued. This is the

list of contexts:
o Authentication Context
o Election Information Context
o Vote Verification Context
o Voting Workflow Context
o Voter Material Context
o Certificate Registry

e The Context Logging signing/encryption certificates and KeyStores are uploaded to the

respective contexts.

e The Context Logging signing/encryption KeyStore passwords are kept by the user and never

stored on disk.
e Each context verifies that the certificates have been issued by the Platform Host CA
3.3.2 Context System Keys
The platform host generates the Tenant Contexts System key pairs, passwords and KeyStores:
e Call the RSA Key pair generation primitive and obtain the Tenant Context System key pair:

(rac,. TACy,), (TVV,, TVV,), (TEL,, TEL,).

pk’

e The Command Line Tool requires entering the platform root KeyStore password to retrieve the
Platform Root CA private key (PRCAg)-

e Call the X509 certificate generation primitive with the Platform Root CA private key (PRCA;,) to
generate the Tenant Context System X509 Certificates. Certificates and KeyStores are

uploaded to the respective context.
e The Tenant System Context KeyStore passwords are kept by the user and never stored on disk

The system keys are used to encrypt/decrypt the KeyStore passwords of the election KeyStores

www.scytl.com
| T e 28

Scytl sVote
Protocol Specifications

Additionally, for the Election Information Context, an extra pair of keys (Election Information Signing
Key Pair) are generated to sign the cleansed Ballot Box after the election period ends and before
sending it to the mixing process. To generate this pair of keys, the following steps are executed per

each Tenant:

e Call the RSA Key pair generation primitive and obtain the Election Information Signing key pair
(Elzjk, EIL3).

e The Command Line Tool requires entering the platform root KeyStore password to retrieve the
Platform Root CA private key (PRCAgy).

e Call the X509 certificate generation primitive with the Platform Root CA private key (PRCAg;,) to
generate the Election Information Signing Certificate. The common name will contain the Tenant
ID and the Service ID.

e The Election Information Signing KeyStore password is encrypted with the Tenant Election

Information Context system public key (TEka).

e The Election Information Signing Certificate, the KeyStore and the encrypted password are

uploaded to the Election Information Context.

3.4 Administration Board constitution and registration

Tenant Authorities Tenant Authorities
Keystore password

L

) SDM
AB private key shares €—— AB certificate

(recording in
smartcards)

constituleAB() —> Certificate

Registry

\4

AB configuration

Administration
Portal

Figure 7 - Administration Board constitution and registration

3.4.1 Administration Board constitution
The Administration Board information such as Member details, number of shares and threshold; is
configured in the Administration Portal (AP). The Administration Board is then locally constituted in the

Print Office using the offline SDM through these steps:

www.scytl.com
| e 29

Scytl sVote
Protocol Specifications

e The Administration Board members (for a specific tenant) are configured in the AP. Several
Administration Boards can be configured and be constituted for the same tenant. This

configuration is synchronized to the Print Office environment.

e Call the RSA Key pair generation primitive and obtain the Administration Board key
pair (AB,x, ABg). The private key splitting functionality receives as input the number of shares,

the threshold and the private key. The private key is divided into shares and each share is stored
in a PIN-protected smartcard:

o Smartcards are initialized (fabric configuration or previous shares are erased).

o The RSA private key is divided into as many shares as provided by the configuration,
and with the configured threshold calling the Shamir Threshold Secret Sharing split

algorithm.
o [Each share is digitally signed with the Administration Board private key (ABg;).

o Each signed share is written in a PIN-protected smartcard. Each Administration Board

member sets their PIN.
o The Administration Board public key (AB,) is stored in a CSR (certificate signing

request), which contains an identifier for the Administration Board in the common name.

3.4.2 Administration Board registration

An Administration Board is certified by a Tenant, so that it can sign election configurations and results
which are held in the scope of that Tenant. The certification of the Administration Board is similar to the
certification of the Tenant:

e The Command Line Tool requires entering the Tenant CA KeyStore password to retrieve the
Tenant CA private key (TCAgy).

e Call the X509 certificate generation primitive with the Tenant CA private key (TCAg,) to issue

the Administration Board X509 certificate.
o The validity period of the certificate should be configurable
o The certificate type is “Signing” and “Non-Repudiation”

e The Administration Board certificate is uploaded to the Certificate Registry.

www.scytl.com
| e 30

Scytl sVote
Protocol Specifications

3.5 Control Components Credentials

Platform Root Platform Root
Keystore Keystore Password
RSA key pair
l }= Control Component
CSR N
Password > Control Platform
Component Root
Control Component
CA Certificate

Figure 8 - Control Component Constitution and Registration

3.5.1 Control Component CA
The platform host registers the Control Component by issuing the X.509 for the Control Component CA.

For each Choice Return Codes Control Component and each Mixing Control Component:

e Call the RSA Key pair generation primitive and obtain the (CCRCAik,CCRCAﬁk)/

(CCMCA{,,{, CCMCAgk). The Command Line Tool requires entering the platform root KeyStore

password to retrieve the Platform Root CA private key (PRCA;).

e The Platform Host CA calls the X509 certificate generation primitive using its private key, to

generate the Control Component CA X509 certificate.
e The Control Component CA certificate and KeyStores are uploaded to the respective CC.

e Each Control Component checks the certificate chain [Control Component CA, Platform Root
CAl.

e The KeyStore and password are kept by the Control Component, locally.

3.5.2 Control Components Logging Keys
Each Control Component generates two key pairs to start logging information in a secure way. One key

pair will be used to encrypt and the other to sign.

e Calls twice to the RSA Key pair generation primitive and obtain the Control Components
Logging key pairs: (CCRlog;;;, CCRZOgQ,j),(CCRlogQ; CCRZOgQ,j),(CCMZOg;;, CCMlong?;),
(CCMlo g CCMlo gg,i).

e The Control Component retrieves the Control Component CA private key (CCRCAL, /CCMCAL)
stored in the KeyStore.

e Call twice to the X509 certificate generation primitive with the Control Component CA private

key (CCRCA;',(/CCMCA;',() to generate the logging signing and encryption X509 certificates.

www.scytl.com
__| T 31

Scytl sVote
Protocol Specifications

These certificates should contain in the common name, the name of the component for which

they are issued.
e The logging signing/encryption private keys are stored in a KeyStore.
3.5.3 Control Component Encryption Keys
The Control Components encryption key will be generated through the following steps:

e Call the RSA Key pair generation primitive and obtain the Control Component Encryption key

pair.

e The Control Component retrieves the Control Component CA private key (CCRCA;'R/CCMCA;'R)

stored in the KeyStore.

e Call the X509 certificate generation primitive with the Control Component CA private key
(CCRCAik/CCMCAik) to generate the Control Component Encryption X509 Certificate. This

certificate should contain in the common name, the name of the component for which they are

issued.

e The private RSA key is stored into a KeyStore and seal it with the password.

www.scytl.com
| T e 32

Scytl sVote
Protocol Specifications

4 Election configuration process

The following diagram is an overview of the election configuration process. This process is mainly
managed by the Voting Card Generation and Election Keys Generation modules in the Print Office
component. Furthermore, the modules of the Print Office components need to interact with the Control

Components through the Election Information Context module of the Voting Server component.

Since Voting Card Generation, Election Keys Generation and Election Information Context modules
uses the Secure Data Manager software component for performing these operations, for simplicity
reasons, the explanation refers to the Secure Data Manager instead of specifying the Print Office and
Voting Server modules. The differentiation between offline Secure Data Manager when talking about
the Print Office modules, and online Secure Data Manager when talking about the Voting Server module
(that mainly acts as a proxy) is maintained though. Sections 4.8 to 4.11 are omitted in the diagram since

they are just a description of how the information is grouped.

The Election Configuration process begins in the Administration Portal, where the elements needed to

run an election can be configured. These elements are:
e Ballots
e Ballot Boxes
e Electoral Authority Lists
e Voting Card Sets

In the Administration Portal, no cryptographic operations are done, all the cryptographic information
needed to run an election is generated either in the Print Office environment executing the offline Secure

Data Manager, or in the Control Components.

Once the previously described elements are fully configured, they are downloaded from the Print Office

or uploaded to the Control Components.

It is mandatory for an Election Event to have a constituted Administration Board assigned to it, to start

the process.

The configuration generated in the Control Components is downloaded to the Print Office to be signed

by the Administration Board as part of the election configuration.

The processes detailed in this section are all executed in the Print Office environment using the offline
Secure Data Manager, except for those where it is explicitly indicated that they are run in the Control

Components.

Before describing the Election configuration process in detail, some notations regarding keys, codes

and variables are needed.

www.scytl.com
| T . 53

Scytl sVote
Protocol Specifications

Choice Return
Codes Control
Components

Secure Data
Manager

Mixing Control

Components

Generate local CAs

Select encryption params and voting options values

.

Generate Authentication Context Information Generate signing keys Generate signing keys
4]

Generate Election Information Context Information
e
—w

Generate Voting Workflow Context Information
|- Send signing certificate
: Send signing certificate Create Election
[Event

1
Assign voting options values to voting options

—
Assign attributes to voting options

Create Ballot

— 1
Generate Ballot Box Information Create
Ballot Box

Create Electoral Board Authority —
Create Mixing key
Send Mixing public keys <

Create

Constitute Election Key Electi K
ection key

I 1
Generate SDM encryption key pair
o
I 1
Generate Verification Card Set Data

<
— 1
Create Voting Card Set in SDM

Create Voting Card Set in CCs
Send computations

< Setup

— .
Reconstruct Admin Board private key and sign
! configuration

—
Send Voting Cards to print
<+

Figure 9 - Election configuration phase overview

4.1 Notation

Variable Meaning

14 Defines the order of the group.

Defines the order of the subgroup of quadratic residues.

g The generator of the mathematical group.
j Index used to refer to a specific Control Component
i Index used to refer to a specific voting options or specific Choice

Return Code.

www.scytl.com
__| T 34

Scytl sVote

Protocol Specifications

Variable Meaning

P Maximum number of options a voter can select (it is also the number
of elements of the Choice Return Codes Encryption private and
public keys).

id Index used to refer to a specific voter.

Number of voting options available in the election

k Number of allowed write-ins

v; The encoding (a prime number) of the voting option selected by the
voter.

m Number of elements of the Election key, that is the number of write-
ins k plus 1.

Table 3 - Variables notation

IDs Meaning

vedigy Voting Card ID. It identifies the Voting Card Data corresponding to a
specific voter.

vedsiy Voting Card Set ID. It identifies the set of information common to a
group of Voting Card IDs. It has one to one correspondence with the
Verification Card Set ID.

VCig Verification Card ID. It identifies the Verification Card Data

corresponding to a specific voter.

UCS;q Verification Card Set ID. It identifies the set of information common
to a group of Verification Card IDs. It has one to one
correspondence with the Voting Card Set ID.

Cid Credential ID corresponding to a specific voter.

Table 4 - Voter Identifiers

IDs Meaning ‘
bbid Ballot box ID. It identifies a ballot box.
bid Ballot ID. It identifies a ballot. One ballot can be related to more than

one Ballot Boxes.

eeid Election Event ID. It identifies an election.

Table 5 - Election Identifiers

www.scytl.com
__| T 35

Scytl sVote
Protocol Specifications

Codes Meaning

SVK 4 Start Voting Key associated to id.

cce i-th short Choice Return Code associated to id.
pcci i-th partial Choice Return Code associated to id.
lcci i-th long Choice Return Code associated to id.

pCi i-th pre-Choice Return Code associated to id.
vcce short Vote Cast Return Code associated to id.
wcci long Vote Cast Return Code associated to id.
pvcce pre-Vote Cast Return Code associated to id.
BCK Ballot Casting Key associated to id.

cm Confirmation Message associated to id.

Table 6 - Codes notation

www.scytl.com
| T e 30

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘
Election Event EECAg;, 1 per Election Event Tenant This RSA private key is used
Root CA to issue the Services CA,
private key Authorities CA and
Credentials CA certificates.
Election Event EECA,, 1 per Election Event Tenant This RSA public key is used
Root CA to validate the Services CA,
public key Authorities CA and
Credentials CA certificates.
Services CA SCAg, 1 per Election Event Tenant This RSA private key is used
private key to issue the Authentication
Token Signer, the Ballot Box,
the Verification Card Set
Issuer and the Vote Cast
Code Signer certificates.
Services CA SCApy 1 per Election Event Tenant This RSA public key is used
public key to validate the Authentication
Token Signer, the Ballot Box,
the Verification Card Set
Issuer and the Vote Cast
Code Signer certificates.
Authorities CA ACAg 1 per Election Event Tenant This RSA private key is used
private key to sign the Electoral Board
private key (E By,) shares.
Authorities CA ACApy 1 per Election Event Tenant This RSA public key is used
public key to validate the signature of
the Electoral Board private
key (EBg) shares.
Credentials CCAg4 1 per Election Event Tenant This RSA private key is used
CA private key to issue the voters’
certificates.
Credentials CCAy 1 per Election Event Tenant This RSA public key is used
CA public key to validate the voters’

certificates.

www.scytl.com
__|

Table 7 - Election CA keys notation

37

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘
Authentication ATsg, 1 per Voting Server This RSA private key is used
Token Signer Election (Authentication both for signing the
private key Event Context) Authentication Token and the
Server Challenge.
Authentication AT sy 1 per Voting Server This RSA public key is used
Token Signer Election (Authentication both for verifying the
public key Event Context) Authentication Token signature
and the Server Challenge
signature.
Ballot Box BBsSb,f"d 1 per Ballot Voting Server This RSA private key is used to
Signer private Box (Election sign the receipt and the datasets
key Information generated during the Ballot Box
Context) Export.
Ballot Box BBS:;:id 1 per Ballot Voting Server This RSA public key is used to
Signer public Box (Election validate the signature generated
key Information with the corresponding private
Context) key.
Verification Card Kiq 1 per voter Voter This ElIGamal private key is
private key used to compute the partial
Choice Return Code
(pCC!?) and the confirmation
message (CM4).
Verification Card Kiq 1 per voter Voter This EIGamal public key is used
public key to generate and verify the
Exponentiation Proof computed
by the voting client.
Verification Card VClg, 1 per Secure Data This RSA private key is used to
Set Issuer Verification ~ Manager sign all the Verification Card
private key Card Set Public keys (K;4) corresponding
to the Verification Card IDs
belonging to the Verification
Card Set.
Verification Card VCly 1 per Voting Server This RSA public key is used to
Set Issuer public Verification (Vote verify the signature generated
key Card Set Verification with the corresponding private
Context) key.

www.scytl.com
__|

T 38

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘
Vote Cast VCCsgy, 1 per Voting Server This RSA private key is used to
Return Code Verification (Vote sign each short Vote Cast
Signer private Card Set Verification Return Code(VCC®)
key Context) corresponding to each
Verification Card ID belonging to
the set.
Vote Cast VCCspy 1 per Voting Server This RSA public key is used to
Return Code Verification (Vote verify the signature generated
Signer public Card Set Verification with the corresponding private
key Context) key.
Codes Secret Csx 1 per Voting Server This symmetric key is used to
Key Verification (Vote compute the long Choice Return
Card Set Verification Codes (ICc!%) and the long Vote
Context) Cast Return Codes (IVC('9).
Credential ID k¢, 1 per voter Voter This RSA private key is used to
authentication sign the Client Challenge.
private key
Credential ID K¢, 1 per voter Voter This RSA public key is used to
authentication verify the signatures generated
public key with the corresponding private
key.
Credential ID k., 1 per voter Voter This RSA private key is used to
signing private sign the vote and the
key Confirmation Message (CM*4).
Credential ID K¢, 1 per voter Voter This RSA public key is used to
signing public verify the signatures generated
key with the corresponding private
key.
KeyStore KSkey;, 1 per voter Voter This symmetric key is used to
symmetric seal the voter’'s KeyStore.
encryption key

www.scytl.com
| T e 3O

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning

CCR; Choice skccr; 1 per Control This EIGamal private key is

Return Codes Verification =~ Component used to partially decrypt the

Encryption Card Set CCR; encrypted pre-Choice Return

private key Codes (pC/?). This key will have
as many elements
(¥) as the maximum number of
options a voter can select. We
will refer to one specific element
as skgc)Rj.

CCR; Choice kaCR]. 1 per Control This EIGamal public key is used

Return Codes Verification =~ Component during the computation of the

Encryption Card Set CCR; Choice Return Codes

public key Encryption public key (pkccr)-
This key will have as many
elements (y) as the maximum
number of options a voter can
select. We will refer to one
specific element as pkéiC)Rj.

CCRj Choice k; 1 per Control This EIGamal private key is

Return Codes Verification =~ Component used to derived Voter Choice

Generation Card Set CCR; Return Code generation private

private key key (k.,) and the Voter Vote
Cast Return Code generation
private key
(kegy).

CCRj Choice gk} 1 per Control This is the EIGamal public key

Return Codes Verification =~ Component corresponding to the CCR;

Generation Card Set CCR; Choice Return Codes

public key Generation private key (k;).

www.scytl.com
__|

40

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘
Choice Return Skeer 1 per Control This EIGamal private key is a
Codes Verification ~ Components combination of the CCR; Choice
Encryption Card Set Return Codes Encryption private
private key keys
(skccr;)- This key will have as
many elements
(¥) as the maximum number of
options a voter can select. We
will refer to one specific element
as skggR.
Choice Return Pkecr 1 per Control This EIGamal public key is used
Codes Verification ~ Components to encrypt the partial Choice
Encryption Card Set Return Codes (pCC/®) in the
public key voting client. This key will have
as many elements
(¥) as the maximum number of
options a voter can select. We
will refer to one specific element
as pkéiC)R.
Voter Choice kij;i 1 per voter Control This ElIGamal private key is
Return Code Component used by the Control
generation CCR; Component CCR; to compute the
private key exponentiation of the encrypted
partial Choice Return Codes
(CCih).
Voter Choice Ki{;z 1 per voter Control This EIGamal public key is used
Return Code Component to compute the exponentiation
generation CCR; proof of the encrypted partial
public key Choice Return Codes (pCCi%) in
the Control Component and to
verify it later.
Voter Vote Cast kCi];i 1 per voter Control This EIGamal private key is
Return Code Component used by the Control Component
generation CCR; CCR; to compute the
private key exponentation of the

Confirmation Message (CM4).

www.scytl.com
__|

s e £ 1

Key Variable

Voter Vote Cast Kcijd
Return Code
generation

public key

Occurrence Owner

1 per voter Control
Component

CCR;

Scytl sVote
Protocol Specifications

Meaning

This EIGamal public key is used
to compute the exponentiation
proof of the confirmation
message (CM4). in the Control

Component and to verify it later.

Electoral Board EBg,

private key

1 per Electoral Board
Electoral

Board

This ElGamal private key is split
and each piece in stored in a
smartcard belonging to one
Electoral Board member. The
reconstructed key is used to
perform the final decryption. In
case write-ins are enabled, this
key will have as many elements
as the number of write-ins (k)

plus 1.

Electoral Board EBy

public key

1 per Electoral Board
Electoral
Board

Authority

This ElIGamal public key is used
to compute the Election public
key (ELyy). In case write-ins are
enabled, this key will have as
many elements as the number

of write-ins (k) plus 1.

CCM; Mixing X;

private key

1 per Control Control
Component

cem;

Component

cem;

This ElIGamal private key is
used to perform partial
decryption in the corresponding
CCM;. In case write-ins are
enabled, this key will have as
many elements as the number

of write-ins (k) plus 1.

CCM; Mixing g
public key

1 per Control Control
Component

cem;

Component

cem;

This ElIGamal public key is used
to compute the Election public
key (ELyy). In case write-ins are
enabled, this key will have as
many elements as the number

of write-ins (k) plus 1.

www.scytl.com
__|

42

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘
Election private ELg, 1 per Control This ElIGamal private key is a
key Electoral Components combination of the Electoral
Board ccCM Board private key
Authority (EBg) and the Control
Components Mixing private keys
(7). In case write-ins are
enabled, this key will have as
many elements as the number
of write-ins plus 1.
Election public ELp 1 per Control This ElIGamal private key is a
key Electoral Components combination of the Electoral
Board cCM Board public key (EB,) and the
Authority Control Components Mixing
public keys (g*) and it is used
to encrypt the voting options. In
case write-ins are enabled, this
key will have as many elements
as the number of write-ins plus
1.
CCR; signing skéCRj 1 per Control This RSA private key is used to
private key Election Component sign the information generated
Event CCR; by CCR;.
CCR; signing pkgCRj 1 per Control This RSA public key is used to
public key Election Component verify signatures generated with
Event CCR; the corresponding private key.
CCM; signing skgCM]_ 1 per Control This RSA private key is used to
private key Election Component sign the information generated
Event cCM; by CCM;.
CCM; signing pkéCMj 1 per Control This RSA public key is used to
public key Election Component verify signatures generated with
Event CCM; the corresponding private key.

www.scytl.com

T £ 3

Scytl sVote
Protocol Specifications

Key Variable Occurrence Owner Meaning ‘

Secure Data skspm 1 per Secure Data This ElIGamal private key is

Manager private Election Manager used by the Print Office to

key Event decrypt the prime numbers and
the ballot casting key
(BCK*%)once they are
exponentiated by the Control
Components.

Secure Data Pkspm 1 per Secure Data This EIGamal public key is used

Manager public Election Manager by the Print Office to encrypt the

key Event prime numbers and the ballot

casting key
(BCK'%) to be sent to the

Control Components.

www.scytl.com
__|

T 44

Key

Choice Return

Code encryption

Scytl sVote

Protocol Specifications

Variable Occurrence Owner Meaning

skecl®

1 per Choice

Voting Server This derived key is used to

Return Code (Vote encrypt the short Choice Return

Return Code

encryption

Cast Return (Vote

symmetric key

symmetric key Verification Code (Cciid)
Context)
Vote Cast skvcctd 1 per Vote Voting Server This derived key is used to

encrypt the short Vote Cast
Code Verification Return Code (VCC™?) and its

Context) signature.

4.2 Create Election Event

Table 8 - Election keys notation

Secure Data
Manager

Choice Return
Codes Control
Components

Mixing Control
Components

1
Generate local CAs

Select encryption params and voting options values

Generate Election Information Context Information

Generate Voting Workflow Context Information

Send signing certificate

—
Generate Authentication Context Information Generate signing keys

A A

Send signing certificate

1
Generate signing keys

Figure 10 - Create Election Event

This process creates all the information related to an Election Event, which includes the election

configuration for the contexts and for the Control Components. A unique Election Event ID (eeid) is

generated in this step, then the subsequent processes are executed.

The Election Event Certificate hierarchy is the following:

www.scytl.com

45

Scytl sVote

Protocol Specifications

Services
CA

Election
Event
Root CA

Credentials
CA

V.

Authorities

i
Authentication Ballot Box Credential ID EB
Token Signer Signer signing private key
Vote Cast Return | | verification Card Credential ID
Code Signer Set Issuer authentication

Figure 11 - Election Event certificate hierarchy

In addition to this certificate hierarchy, the Control Components will create a Control Component signing

certificate per Election.

Platform
Root
CA

Control

Control
Component
CCM, CA

Control
Component
{ |[_‘ ;1I 'j; (::A

Control Control
Component

CCR, CA

Control
Component
CCR, CA

Control
Component
CCR, CA

Component
CCM; CA

Component
CCR, CA

CCR; Signing
Certificate

CCR, Signing
Certificate

CCR5 Signing
Certificate

CCR, Signing
Certificate

CCM; Signing
Certificate

CCM, Signing
Certificate

CCM; Signing
Certificate

Figure 12 - Control Components Election Event certificate hierarchy

4.2.1 Generation of local Certification Authorities (CA)
The first information to be created during the Election configuration process are the keys and certificates

for the Certification Authorities. For each one of them we define below how they should be generated:
1) Election Event Root CA

1) Call the RSA Key pair generation primitive and obtain the CA key pair:(EECAyy,
EECAg,).

www.scytl.com
__|

2)

3)

4)

5)

Scytl sVote
Protocol Specifications

Call the X509 certificate generation primitive to generate a self-signed certificate using
EECA,. The certificate contains the CA name, the Election Event ID (eeid), the validity

period and the certificate name field values.

Call the Random value generation primitive to generate a random password of length
26 chars in base 32.

Store the private RSA key into a KeyStore and seal it with the password.

Passwords must be stored encrypted.

2) Services CA

1)

2)

3)

4)

5)

Call the RSA Key pair generation primitive and obtain the CA key pair: (SCApy, SCAgy).

Call the X509 certificate generation primitive to generate a certificate signed with the
EECAg. The certificate contains the CA name, the Election Event ID (eeid), the validity

period and the certificate name field values.

Call the Random value generation primitive to generate a random password of length

26 chars in base 32.
Store the private RSA key into a KeyStore and seal it with the password.

Passwords must be stored encrypted.

3) Authorities CA

1)

2)

3)

4)

5)

Call the RSA Key pair generation primitive and obtain the CA key pair: (ACApy, ACAgy).

Call the X509 certificate generation primitive to generate a certificate signed with the
EECAg,. The certificate contains the CA name, the Election Event ID (eeid), the validity

period and the certificate name field values.

Call the Random value generation primitive to generate a random password of length

26 chars in base 32.
Store the private RSA key into a KeyStore and seal it with the password.

Passwords must be stored encrypted.

4) Credentials CA

www.scytl.com

1)

2)

3)

Call the RSA Key pair generation primitive and obtain the CA key pair: (CCApy, CCAgy).

Call the X509 certificate generation primitive to generate a certificate signed with the
EECAg,. The certificate contains the CA name, the Election Event ID (eeid), the validity

period and the certificate name field values.

Call the Random value generation primitive to generate a random password of length

26 chars in base 32.

Scytl sVote
Protocol Specifications

4) Store the private RSA key into a KeyStore and seal it with the password.

5) Passwords must be stored encrypted.

4.2.2 Selection of encryption parameters and voting option values generation
The encryption parameters (p,q,g) used for the ElGamal encryption scheme satisfy the following
conditions:

5) pis a safe prime such that p = 2q + 1. q is also prime (2047 bits), and p is of a defined length
(2048 bits).

6) The generator g is of order gq.

7) The subgroup of Z;, of order g, defines the quadratic residue group over which the encryption

scheme is defined.

The values used to represent the voting options in the ballots are chosen from a list of prime numbers
in such a way that they fulfil certain conditions regarding the encryption parameters generated (prime

numbers should be quadratic residues in Zy).

Both the encryption parameters and the prime numbers are already computed at this point, and in this
step a tool to select encryption parameters and voting option values, is implemented. This tool selects
at random, a pair of encryption parameters and prime numbers from the sets generated in a pre-
configuration phase, taking into account the number of values that will be needed to represent the voting

options.

4.2.3 Generation of Control Components signing keys
Each Control Component generates a signing certificate per election to sign the information that they

will generate during the configuration, the voting and the counting processes.

1. Call the RSA Key pair generation primitive and obtain the Control Component signing key pair:

(pkgCR]" SkgCRj) / (pkgCM]' SkgCMj)
2. The Control Component is asked to introduce a KeyStore password.

3. The Control Component retrieves the Control Component CA private key (CCRCAL, /CCMCAL)

stored in the KeyStore.

4. Call the X509 certificate generation primitive with the Control Component CA private key
(CCRCA;'R/CCMCA;'R) to generate the Control Component Signing X509 Certificate. The

certificate should contain in the common name, the name of the component for which it is issued

and the election event ID (eeid).

5. Call the Random value generation primitive to generate a random password of length 26 chars
in base 32.

6. The private RSA key is stored into a KeyStore and seal it with the password.

www.scytl.com
__| T 48

Scytl sVote

Protocol Specifications

7. The KeyStore password must be stored encrypted using the Control Component encryption

private key (CCRe;k/CCMe;J;k)-

4.2.4 Generation of Authentication Context Information
In this step, the set of configuration information that should be stored in the Authentication Context is
created. Some of this information, such as the Election Event ID (eeid) and the CA certificates, have

been already generated in previous steps.
First, the Authentication Token Signer key pair and certificate are generated:

1. Callthe RSA Key pair generation primitive and obtain the Authentication Token Signer key pair
(AT'spy, AT sgp).

2. Call the X509 certificate generation primitive to generate a certificate containing the Election
Event ID (eeid), the validity period, the target service identifier and the certificate name field

values, signed with the Services CA private key (SCAgy).

3. Call the Random value generation primitive to generate a random password of length 26 chars

in base 32. This is the Authentication Token Signer Password.
4. Store the private RSA key into a KeyStore and seal it with the password.

5. Encrypt the Authentication Token Signer Password with the Authentication Context System

public key.
Then, the following set-up parameters are established:
e Challenge-response expiration time
e Authentication Token expiration time
e Challenge length

Finally, the information is grouped as follows to distinguish the data to be sent to the Client Context and

the data that will remain in the Authentication Context:

Authentication Voter Data
- Election Event ID (eeid)
- Election Event Root CA
- Services CA
- Authorities CA
- Credentials CA

- Authentication Token Signer certificate

Table 9- Authentication Voter Data

Authentication Context Data

www.scytl.com
__| T 49

Scytl sVote
Protocol Specifications

- Election Event ID (eeid)
- Authentication Token Signer KeyStore
- Authentication Token Signer Password (encrypted with the Authentication Context System
public key)
- Setup parameters:
- Challenge-response expiration time
- Authentication Token expiration time

- Challenge length

Table 10 - Authentication Context Data

4.2.5 Generation of Election Information Context Information
It generates the set of configuration information that should be stored in the Election Information Context.

The set of information is the following:

Election Information Context Data ‘

- Election Event ID (eeid)
- Election Event Root CA
- Services CA
- Authorities CA
- Credentials CA
- Setup parameters:
- Number of votes per Voting Card ID

- Number of votes per Authentication Token ID

Table 11 - Election Information Context Data

4.2.6 Generation of Voting Workflow Context Information

Generates the information to be stored in the Voting Workflow Context:

Voting Workflow Context Data

- Number of confirmation attempts

Table 12 - Voting Workflow Context Data

4.3 Create Ballot
It assigns values to the voting options in a ballot. The following processes are executed.

e Assignation of voting option values.

e Assignation of attributes to voting options.

www.scytl.com
__| T 50

Scytl sVote

Protocol Specifications

4.3.1 Assignation of voting option values
The ballot contains the election information to be displayed to the voter, such as the questions and the
possible answers they can choose from. It also contains some rules to be enforced/checked on the

voter’s selections (for example, not selecting more than one answer).

In this step, a value (prime number) is assigned to each of the voting options in the ballot. These values

will be those encrypted at the voting phase.

The format of the complete ballot is detailed below.

4.3.1.1 Ballot format
The ballot contains the following fields:

www.scytl.com
__| T o1

Scytl sVote
Protocol Specifications

Ballot

www.scytl.com
| T e D2

Scytl sVote
Protocol Specifications

- Ballot ID (bid)
- Default title
- Default description
- Alias
- Election Event ID (eeid)
- Contest (as many as the number of contests)
- Contest ID
- Default title
- Alias
- Election Event ID (eeid)
- Template (options or list and candidates)
- Full Blank (true or false): Setting this field to true, the voter can send the vote without
selecting any option (election rules defined in “questions” do not apply).
- Options: (As many as options in the contest)
= |ID
= Representation: prime number
= Attribute: Refers to one attribute of the next section and defines what kind of

option it is (candidate, list, answer, write-in, blank candidate, blank list...).

- Attributes
= D
= Alias

= Correctness: (True or false)
= Related: Attributes related with this attribute (for instance, a specific answer is
related with the attribute that represents its question).
- Questions: (One per selectable option, that is, a list, a candidate, a question)
= ID
= Max: Maximum number of selections for this question
= Min: Minimum number of selections for this question
= Accumulation: Will be greater than 1 if the question can be selected more
than once (for instance, vote twice for the same candidate).
= writeln: True if the question allows write-ins
= blankAttribute: Attribute ID representing the blank attribute for this question.
= writelnAttribute: Writein attribute ID representing the write in attribute for this
question.
= attribute: Attribute ID
= fusions: Contains the alias of the attributes that represents the same.
- encryptedCorrectnessRule: To be executed during the voting phase in the Election
Information Context.

- decryptedCorrectnessRule: To be executed over the decrypted vote.

www.scytl.com
__| T 53

Scytl sVote

Protocol Specifications

- Status

- Details

- Synchronized
- ballotBoxes

- signedObject

Table 13 - Ballot

4.3.1.2 \Write-ins

Depending on the type of the election, the ballot can allow the voter to enter k write-ins, that is, the voter
can introduce some free-text. The protocol does not support individual verifiability of the content of the
write-ins (it is impossible to generate Choice Return Codes from open text). However, the protocol can
be used to prove the voter whether his/her intention has been casting a write-in instead of a selection
of an explicit candidate or an explicit blank vote. This option only provides individual verifiability of explicit

options when write-in is another option.

In this case, the ballot should contain one voting option for each write-in and a voting option value
assigned to each one. This value does not represent the text inside the write-in but the fact that the

voter has filled it in. The “write-in filled” voting options need to have the following labels/attributes:
o ‘“write-in”
e Anidentifier of the write-in position to which they belong, so that a “write-in filled” voting option

value can be related to a specific write-in field.

The text introduced by the voter should be encoded into a group element. Note that in order to be a

group element, the value should be a quadratic residue.

4.3.2 Assignation of attributes to voting options

The voting options in the ballot are labelled with a set of attributes which allow the following:
e To print them with the correct format in the voter screen.

e To check that a vote is well-formed (hence, it contains a valid set of voting options). This check,
also referred as vote correctness verification, is part of the cryptographic protocol. The vote

correctness is checked at two levels.

o The first level is when the vote is in plain text, and validations that need the full context
of the election can be applied to it. These validations are done both before the vote is

encrypted in the voting client and when the vote is decrypted.

o The second level is done at the voting server over the encrypted vote. Vote correctness
validations include validations about the write-ins, the existence of the return codes or

the number of elements of the encrypted vote (among others).

www.scytl.com
__| T 54

Scytl sVote
Protocol Specifications

Some of the attributes are used for verifying the vote correctness during the voting phase, which means

that they are sent to the server, together with the vote. Such attributes are configured to contain a flag

“correctness” set to true, while other attributes have this flag set to false.

The following attributes in the ballot have the flag “correctness = true”:

Options:

o Question ID attribute (the attribute that refers to which question the voting option

belongs to).
List and Candidates:
o List attribute (the attribute that says that this is a list).

o Candidate attribute (the attribute that says that this is a candidate).

Other attributes such as (blank, non_blank, writein) have the flag “correctness = false”.

4.4 Create Ballot Boxes

This process generates the configuration data specific to a set of Ballot Boxes. The Ballot Box

configuration data defines how the votes are going to be encrypted (e.g., encryption parameters), stored

(e.g., voting period) and verified (e.qg., verification grace period).

Additionally, Ballot Boxes can be configured as a Test Ballot Box, which means that they can be

downloaded at any time during the election process. One Ballot Box is identified by a unique Ballot Box
Identifier (Ballot Box ID (bbid)) and is defined to contain one type of ballot, defined by the Ballot ID

(bid). However, the same type of ballot may be stored in different Ballot Boxes.

For each of the Ballot Box identified by its corresponding Ballot Box ID (bbid):

1)

2)

3)

4)
5)

6)

Call the RSA Key pair generation primitive and obtain the Ballot Box Signer key pair

(BBsp'* , BBsj;'4).

Call the X509 certificate generation primitive to generate a X.509 certificate containing the Ballot
Box ID (bbid), the validity period and the certificate name field values. This certificate is signed

with the Services CA private key (SCAgy,).

Call the Random value generation primitive to generate a random password of length 26 chars
in base 32.

Store the private RSA key into a KeyStore and seal it with the password.
Encrypt the password with the Election Information Context System public key.

Generate Ballot Box Information structure containing:

www.scytl.com
__| T 55

Scytl sVote
Protocol Specifications

Ballot Box Information

- Ballot Box ID (bbid)

- Grace Period

- Alias

- Encryption Parameters
- Election Key ID

- Write-In Alphabet

- Confirmation Required
- Ballot Box Certificate

- Ballot ID (bid)

- Test

- Start date

- Enddate

- Election Event ID (eeid)

Table 14 - Ballot Box Information
7) Generate a Ballot Box Context Data structure containing:

Ballot Box Context Data
- Ballot Box ID (bbid)
- Election Event ID (eeid)
- KeyStore
- KeyStore password (encrypted with the Election Information Context System

public key)

Table 15 - Ballot Box Context Data
8) Generate a Ballot Box Voter Data structure containing:

Ballot Box Voter Data

- Ballot ID (bid)

- Ballot Box ID (bbid)

- Election Event ID (eeid)
- Encryption parameters

- Ballot Box certificate

- Election key

Table 16 - Ballot Box Voter Data

Note that the information related with the Election key that is part of both the Ballot Box Information and
Ballot Box Voter Data, cannot be included yet since it has not been generated yet. The Election key

generation is explained in section 4.5.3.

www.scytl.com
__| T 56

Scytl sVote
Protocol Specifications

4.5 Create Election key

Choice Return

Secure Data Codes Control

Mixing Control

Manager Components
9 Components P
[1
Create Electoral Board Authority —
+— Create Mixing key
Send Mixing public keys b

Constitute Election Key

<_I

Figure 13 - Create Election key

The Election key is generated among the CCM,, CCM,, CCM; and the Electoral Board. The election
public key (EL,y) is set to be part of the information linked to one or more Ballot Boxes, and the votes
which are intended to be stored in these Ballot Boxes will be encrypted with this key. The election private
key (ELg) is kept by the Electoral Board members and the Control Components (CCM;, CCM,, CCM3),
which will use it to decrypt the votes collected in these Ballot Boxes after the voting phase ends. Without

the decryption key, the votes cannot be decrypted, and the results cannot be obtained.

ELg;,

skm

EB

CCM1 CCM2 CCM3 Y

Figure 14 - Election key generation

4.5.1 Create Electoral Board Authority

The Electoral Board is an entity formed by several members who are responsible for decrypting the
votes which have been collected in determined Ballot Boxes during an Election Event.

For this purpose, they are responsible for the generation of a pair of encryption/decryption keys.

The Electoral Board private key (EBg,) key is split using a secret sharing scheme, and each piece is
provided to one of the Electoral Board members. This prevents an Electoral Board member from being
able to decrypt a set of votes on their own (for example, before the voting phase ends, to get some

partial results information), without the agreement of a certain number of other members.

For each Electoral Board Authority, identified by the corresponding Electoral Authority ID, and given the
threshold value:

www.scytl.com
__| T o7

Scytl sVote
Protocol Specifications

1) Call the EIGamal Key pair generation primitive using the encryption parameters and obtain the
Electoral Board key pair: (EB,y, EBg) = (gZ85k, EBg,)

2) Call the Shamir Threshold Secret Sharing split algorithm to split the Electoral Board private key
(EBg) into as many pieces as indicated by the number of members of the EB, and with the
threshold defined.

3) Call the Digital signature generation primitive to sign every share with the Authorities CA private
key (ACAg,)

4) Generate the Electoral Authority structure containing:

Electoral Authority Data

- Electoral Authority ID
- Electoral authority public key (EBpy)

Table 17 - Electoral Authority Data
As mentioned before, the Electoral Board Authority is generated by the Election Keys Generation

module of the Print Office component using the SDM offline software.

4.5.2 Create Control Components Mixing key

In this step the Control Components contributions to the Election key pair (EL,, ELg,) are generated.
For each Electoral Authority and each Control Component CCM; where j € {1,2,3}:

1. Call the EIGamal Key pair generation primitive using the encryption parameters provided and

obtain the CCM; Mixing key pair: (g*/, x;).

2. Call the Digital signature generation primitive to sign the CCM; Mixing public key (g*/) together
with the Electoral Authority ID and the Election Event ID (eeid) using the CCM; signing private

key (SkgCMj)'
3. Encrypt CCM; Mixing private key (x;) using the CCM; encryption public key (CCMerk).
The CCM; mixing public key (g*/) and its signature are sent to the Secure Data Manager (Print Office)

to constitute the Election public key (EL,,) once the Electoral Board has been created.

4.5.3 Constitute Election key
Once the Control Components and the Electoral Board have generated their own keys, the Election key

can be constituted following the next steps:
1. Validate the Control Components certificate chains:
o [CCM, signing certificate, CCM,; CA Certificate, Platform Root CA]
o [CCM, signing certificate, CCM, CA Certificate, Platform Root CA]

www.scytl.com
__| T 58

Scytl sVote
Protocol Specifications

o [CCM, signing certificate, CCM; CA Certificate, Platform Root CA]
2. Validate the following signatures using the corresponding CCM,; signing certificate:
o CCM; mixing public key (g**) signature
o CCM, mixing public key (g*z) signature
o CCM5 mixing public key (g*3) signature
3. Generate the Election public key:
3
ELy = BBy - | [g = "o
j=1

4. Generate the Election Key structure containing:

Election Key Data

- Election Key ID
- Election public key (EL,y)

Table 18 - Election Key Data

5. Fill the Election Key ID field in each of the Ballot Box Information items (see Table 14 - Ballot
Box Information).

6. Fill the Election Key ID field in each of the Ballot Box Voter Data items

45.3.1 Election key when write-ins are allowed

In case the election type allows the voter to enter free text (write-in), additional ciphertexts resulting in
the encryption of these text values are added to the vote message. The key to encrypt them should be
different from the one used to encrypt the votes to prevent attacks.

For this purpose, the Electoral Board Key and the Control Components Mixing Key should have at least
as many components as the maximum number of write-ins (k) to be filled in a ballot managed by such
Electoral Authority, plus one.

) (m)
ELy = (ELSY, .. ELSY)

www.scytl.com
__| T 59

4.6 Protocol Setup algorithm

Scytl sVote

Protocol Specifications

Choice Return
Codes Control
Components

Secure Data
Manager

Mixing Control
Components

Generate SDM encryption key pair
4 1

1
Generate Verification Card Set Data

[1
Generate Start Voting Key
<+

1
Generate Credential Data

Generate Verification Card Data

<+
1
Generate BCK

1
Encrypt prime numbers and BCK

Send encrypted prime numbers and BCK

[1

Generate Choice Return Codes
-4— Encryption key pair
1
Generate Choice Return Codes
4 Generation key pair

Send computations

—
Derive Voter Choice Return Code

Generation private key and Voter Vote
Cast Return Code Generation private

< key
—/

Exponentiate encrypted prime numbers
< and BCK

4

Verify computations

—
Generate short Choice Return Codes

—
Compute pre Choice Return Codes
1
Generate Choice Return Codes mapping

[
Generate short Vote Cast Return Codes

1
Compute pre Vote Cast Return Code

[
Generate Vote Cast Return Codes mapping

Figure 15 - Protocol Setup algorithm

During the execution of the Setup algorithm the following information is generated:

SDM encryption key pair
Verification Card Set Data

Voting Card Set Data

o Start Voting Key (SVK;4), Credential ID (c;;) and KeyStore symmetric encryption key

(KSkeyiq)
o Credential Data
o Verification Card Data

o Verification Card Codes

www.scytl.com
__|

60

Scytl sVote
Protocol Specifications

While the SDM encryption key pair and the Verification Card Set Data are generated entirely in the
Secure Data Manager (Print Office), the Voting Card Set Data is generated among the Secure Data

Manager (Print Office) and the Control Components.

The following tables contain a summary of the keys and identifiers generated by either the Secure Data

Manger (Print Office) or the Control Components, during the execution of the Setup algorithm.

Secure Data Manager (Print Office) ‘

Generates per Election Event:

- Secure Data Manager encryption key pair (pkspm, Skspm)

Generates per Verification Card Set:

- Verification Card Set ID (vcs;q)

- Codes Secret Key (Cg)

- Vote Cast Return Code Signer key pair (VCCspy, VCCsgy)

- Choice Return Codes Encryption Public key (pkccg) (this key is computed from the CCR;
Choice Return Codes Encryption public keys)

- Verification Card Set Issuer key pair (VCI,, VCl)

Generates per Voter:

- Voting Card ID (vedy)

- Verification Card ID (vc;q)

- Start Voting Key (SVK4)

- Ballot Casting Key (BCK'?)

- Short Choice Return Codes (CC4, ..., CCi4)

- Short Vote Cast Return Code (VCC?)

- Credential ID Authentication key pair (K¢, ,, k¢,,)
- Credential ID Signing key pair (K¢, . k¢,,)

- Verification Card key pair (K;4, kiq)

Computes per Voter:

- pre-Choice Return Codes (pC%, ..., pCid)

- long Choice Return Codes (ICCE, ..., 1CCIY)

- Choice Return Code encryption symmetric key (skcci?, ..., skcci?
- pre-Vote Cast Return Code (pVC€C?)

- long Vote Cast Return Code (IVCC'4)

- Vote Cast Return Code encryption symmetric key (skvcc)

Derives per Voter:
- Credential ID (c;q)
- KeyStore symmetric encryption key (KSkey;)

Table 19 - Keys and identifiers generated by the SDM during the Setup algorithm

www.scytl.com
__| T 61

Scytl sVote
Protocol Specifications

Control Component CCR; ‘

Generates per Verification Card Set:

- CCRj Choice Return Codes Encryption key pair (kaCRj,skCCRI.)

- CCRj Choice Return Codes Generation key pair (ghi, kj)

Derives per Voter:
- Voter Choice Return Codes generation key pair (K’l.'d, k{:d)

- Vote Cast Return Code generation key pair (Kc{fd, kc{d)

Table 20 - Keys and identifiers generated by the CCR; during the Setup algorithm

4.6.1 Generate SDM encryption key pair
The Secure Data Manager (Print Office) calls the EIGamal Key pair generation primitive and obtains the
SDM encryption key pair (pkspu, Skspy) that will be used to encrypt sensitive information that is sent

between the Control Components and the SDM (Print Office).

4.6.2 Generate Verification Card Set Data

For each Ballot Box created, a set of voting cards is generated. This set of voting cards defines the
resources that will be assigned to the voter and used by them to cast their vote. Voters who use voting
cards from a specific set will cast votes into a specific Ballot Box. Correspondingly, a Verification Card
Set is generated, which is intended to group the information corresponding to the cast-as-intended
verification process for the voters in the same Voting Card and Verification Card sets, given that they

have one-to-one correspondence.

For each Verification Card Set:
1) Generate a Verification Card Set Identifier (Verification Card Set ID).
2) Generate the Codes Secret Key (Cg):

o Call the Symmetric key generation primitive to generate a random secret key and set it
to be the Codes Secret Key (Cq)

o Call the Random value generation primitive to generate a random password of length

26 chars in base 32.
o Store the Codes Secret Key KeyStore and seal it with the password generated.
3) Generate the Vote Cast Return Code Signer keypair and certificate:

o Callthe RSA Key pair generation primitive and obtain the Vote Cast Return Code Signer
key pair (VCCspy, VCCsgy)

o Call the X509 certificate generation primitive to generate a X.509 certificate containing
the Election Event ID (eeid), the Verification Card Set ID (vcs;y), the validity period and

the certificate name field values

www.scytl.com
| T e 02

Scytl sVote
Protocol Specifications

4.6.3 Create Voting Card Set

For each Ballot Box created, a set of voting cards is generated. This set of voting cards defines the
resources that will be assigned to the voter and used by them to cast their vote. Voters who use voting
cards from a specific set will cast votes into a specific Ballot Box.

e First, a unique Voting Card Set Identifier (vcds;,;) is generated.
Then, the following processes are executed:

e Generation of Start Voting Key (SVK;;), Credential ID (c;4) and KeyStore symmetric encryption
key (KSkey,;)KeyStore.

e Generation of Credential Data.
e Generation of Verification Card Data.

e Verification Card Codes generation.

4.6.3.1 Generation of Start Voting Key, Credential ID and KeyStore Password
The Start Voting Key (SVK;y) is the password entered by the voter in the Voter Portal. This password

will be used to authenticate the voter and to give him permission to cast a vote.

From this Start Voting Key (SVK;;), two values are derived; the Credential ID (c;4), which identifies a
set of resources (i.e., voting credentials) to be assigned to the holder of that start voting key, and the

KeyStore symmetric encryption key (KSkey;,), which will be used to open the corresponding KeyStores.
For each Voting Card:
1. Generate a Voting Card ID (vcd;y).

2. Call the Random value generation primitive to generate the Start Voting Key (SVK;;) as a

random value of length 20 chars in base 32.
3. Call the Password-based key derivation function with the following inputs:
o Password: Start Voting Key (SVK;4).
o Salt: concatenation of the string ‘credentialid’ and the Election Event ID (eeid).
The result is the Credential ID (c;q).
4. Call the Password-based key derivation function with the following inputs:
o Password: Start Voting Key (SVK;y).
o Salt: concatenation of the string ‘KeyStorepin’ and the Election Event ID (eeid).
The result is the KeyStore symmetric encryption key (KSkey;q).
After all the Voting Card have been generated, the following list of pairs are created:
* (cig —KSkey;q)

www.scytl.com
__| T 63

Scytl sVote
Protocol Specifications

* (cig —SVKyq)

4.6.3.1.1 Extended authentication
For the voter to be authenticated, it is also possible to require additional authentication values and a
challenge question (for instance, the year of birth). The voter will introduce the Start Voting Key (SVK;4)

in the Voter Portal and this extra information.

In this situation, additional information will be generated besides the Start Voting key (SVK;;), the
Credential ID (c¢;4) and the KeyStore password (KSkey;;). In order to generate this additional

information, the following data should be provided:
e List of pairs (VoterAlias — Challenge answer)
e Number of additional authentication values and its length.
e List of pairs (c;; — SVK;;), computed in the previous step.
Then, for each Voting Card:

1) Relate the Voting Card and the Start Voting Key (SVK;,;) to a pair of (VoterAlias — Challenge

answer).

2) Generate an Authentication Key from the additional authentication values. In case no additional
information is required to be authenticated, call the Random value generation primitive to
generate a random password of length 20 chars in base 32. The result will be the Authentication

Key.
3) Call the Password-based key derivation function with the following inputs:
o Password: Authentication Key value.
o Salt: concatenation of the string ‘authid’ and the Election Event ID (eeid).
The result is the Authentication ID.
4) Call the Password-based key derivation function with the following inputs:
o Password: Authentication Key value.
o Salt: concatenation of the string ‘authpassword’ and the Election Event ID (eeid).
The result is the password.

5) Call the Symmetric encryption primitive to encrypt the Start Voting Key (SVK;;) using the

derived password.
6) Call the Password-based key derivation function with the following inputs:
o Password: Challenge Answer value.

o Salt: call the Random value generation primitive to compute a random salt of 256 bits.

www.scytl.com
__| T 64

Scytl sVote
Protocol Specifications

After the extended authentication information for all the generated Voting Cards, the following list of
pairs are created:

e (Credential ID (c;4) — Authentication ID).
e (VoterAlias — Authentication ID).
e (Authentication ID — Authentication Key).

e (Authentication ID — PBKDF2(ChallengeAnswer, Salt) — Salt — Encrypted (SVK;y)).

4.6.3.2 Generation of Credential Data
Generation of credential data, which is needed to authenticate into the platform and cast a vote. A

Credential Data item is associated to one Voting Card.
For each Credential ID (c;q):
1) Call twice the RSA Key pair generation primitive and obtain the:

o Credential ID Authentication key pair (K¢, ,, k¢,,)
o Credential ID Signing key pair (K¢, k¢, ,)

2) Call twice the X509 certificate generationprimitive to generate two X.509 certificates, one for
each RSA public key, containing the Election Event ID (eeid), the Credential ID (c;,), the validity
period and the certificate name field values. One will be intended for authentication, and the

other for digital signatures. Therefore, include ‘Auth’ or ‘Sign’ respectively in the certificate field.
3) Digitally sign the certificates using the Credentials CA private key (CCAg).

4) Store the private RSA keys and the certificates into a KeyStore and seal it with the

corresponding KeyStore password (KSkey;y).
Generate the Credential Data structure with the following information:

Credential Data
- List of pairs (Credential ID (c;4) - Credential KeyStore), where each KeyStore contains:
- Certificate for the authentication public key
- Certificate for the signing public key
- Credential ID Authentication private key (kg,,)

- Credential ID Signing private key (kg,,)

Table 21 - Credential Data

4.6.3.3 Generation of Verification Card Data

Generation of the data that will be needed to compute the Encrypted vote and the Confirmation message
at the voting client context during the voting phase. This information is generated both in the Control
Components and in the Secure Data Manager (Print Office).

www.scytl.com
__| T 65

Scytl sVote
Protocol Specifications

For each Verification Card Set ID (vcs;q), each Control Component CCR;:
1) Generates the CCR; Choice Return Codes Encryption key pair:

o Calls the ElGamal Key pair generation primitive and generates a key pair with ¥

components, where v is the maximum number of options a voter can select:
. (1) (D ()] W)
PRecr;: {(kaCRj'SkCCRj)' ""(kaCRj'SkCCRj)}

)
i sk i
where pké‘C)Rj =g “N.

o The public part of every key pair is signed together with the Verification Card Set ID
(vesiq) and the Election Event ID (eeid), using the CCR; signing private key (skgCRj).

o Encrypts the private key using the CCR; encryption public key.
2) Generates the CCR; Choice Return Codes Generation key pair:

o Calls the ElGamal Key pair generation primitive and generates their own key pair:
("1, k).

o Encrypts the private key using the CCR; encryption public key (generated in section
3.5.3).

3) Sends the CCR; Choice Return Codes Encryption public key: (pk&%},,...,pkéﬁj) and its

signature to the Secure Data Manager (Print Office).
For each Verification Card Set ID (vcs;;), the Secure Data Manager (Print Office):
1) Receives the following information from the Control Components:

o CCR; Choice Return Codes Encryption public key: (pkélc)Rl,...,pkéﬁl) and its

signature.

o CCR, Choice Return Codes Encryption public key: (pkélc)Rz,...,pkgﬁz) and its

signature.

o CCR; Choice Return Codes Encryption public key: (pkélc)&,...,pkggg) and its

signature.

o CCR, Choice Return Codes Encryption public key: (pkélc)m,...,pké’gzh) and its

signature.
2) Generates a Verification Card Set Issuer keypair:

o Call the RSA Key pair generation primitive and obtain the Verification Card Set Issuer
key pair (VCI,y, VClg).

www.scytl.com
| e

3)

4)

5)

6)

7

Scytl sVote

Protocol Specifications

o Callthe X509 certificate generation primitive to generate a X.509 certificate for the RSA
public key, containing the Election Event ID (eeid), the Verification Card Set ID (vcs;y),

the validity period and the certificate name field values.

Verifies the signatures of the CCR; Choice Return Codes Encryption public keys

(Pkccryy - Pkccr,) @and multiplies them to obtain the Choice Return Codes Encryption public key

(Pkccr):

1 1 1 P)
{pk((:C)R = pkéC)R1 et pkéC)R4 = g°rCCrRyTTECCR,
' W) W)
ipk((:llcjz)e = pkgg}h R pkgé’zh = g®kccr, ttSkecr,

The corresponding private key will be skqcp = (skélc)R, ...,sk?’c’,)?).

Stores the Choice Return Codes Encryption public key (pkccr), the individual CCs Choice
Return Codes public keys (pkccg,, -, Pkecr,) and their signatures. This information will be

uploaded later to the voting channel.

For each Credential ID (c;4) in the Verification Card Set, generate a Verification Card Data item

in the following way:
o Generates a random identifier Verification Card ID (vcyy).

o Calls the ElGamal Key pair generation primitive using the encryption parameters

provided and obtain the Verification Card key pair: (K4, kiq)-

o Calls the Digital signature generation primitive to sign the Verification Card public key
(K;q), the Election Event ID (eeid) and the Verification Card ID (vc;y) using the

Verification Card Set Issuer private key (VCIg).

o Stores the Verification Card private key (k;,) into a KeyStore (VCks;;) and seal it with

the corresponding password (KSkey;s).

Generates the Verification Card Data set:

Verification Card Data ‘

Contains one row per Verification Card ID with the following information:

- Verification Card ID (vc;4)

- Verification Card Set ID (vcs;q)

- Election Event ID (eeid)

- Verification Card KeyStore (VCks;4), containing the Verification Card private key (k;q)

- Signed Verification Card public key (K;4)

Table 22 - Verification Card Data

Once all the Verification Card Data items have been generated, creates the following list of pairs

www.scytl.com
__| T 67

Scytl sVote
Protocol Specifications

o (Verification Card private key (k;;) - Verification Card ID (vc;y)).
o (Verification Card ID (vc;;) — Voting Card ID (ved;y)).
4.6.3.4 Verification Card Codes generation

In this step, the codes to be printed in the verification card for the voter are generated. These codes are

the following:

e Choice Return Codes (CCH4,...,CCi%), which are linked to a ballot’s set of voting options

V1, oy 1),
e Ballot Casting Key (BCK?), and

e Vote Cast Return Code (VCC%) which are used to confirm and check the confirmation of the

vote casting.

Additionally, a Codes Mapping Table is created to provide the link between the voting options (v, ..., v,)
and the Choice Return Codes (CC}4, ...,cci?), and between the Ballot Casting Key (BCK'?) and the
Vote Cast Return Code (VCC9).

The Verification Card Codes and the corresponding Mapping Table are generated for a specific ballot.
The process below is performed for all the Verification Card IDs (vc;4) in a specific Verification Card Set
(ves;y) and is an interaction between the Secure Data Manager (Print Office) and the Control

Components CCR;.
For each Verification Card Set (vcs;y), the SDM (Print Office):

1) Calls the EIGamal encryption primitive as many times as voting options in the ballot, and using

the Secure Data Manager public key (pkspy), the output is:
{EkaDM (171), Epk_gDM (Uz), ey EkaDM (vn)}
2) For each Verification Card ID (vc;,) in the Verification Card Set:

o Calls the Random value generation primitive to generate a random 8-digit value and
computes from it a one-digit checksum using the EAN13 standard. Let the

concatenation of the two values be the Ballot Casting Key (BCK'?).

o Squares the BCK' and computes the exponentiation to the Verification Card private

key kid:
CML'd — (BCKid)Zkid

o Compute a hash of CM and encrypts the squared result calling the ElGamal

encryption primitive with the SDM encryption public key pkgpp:

Epkgpy (Hash(CM'@)?).

www.scytl.com
| T e 68

Scytl sVote
Protocol Specifications

3) Calls the Digital signature generation primitive to sign the encrypted prime numbers and the list

of encrypted Hash(CM')? using the Administration Board private key (4B,,) and sends the

signed information to the Control Components.

For each the Verification Card Set, each Control Component:

1) Receives from the SDM (Print Office) the following information:

(¢]

(0]

Encrypted prime numbers: {Epic, . (V1)) Epiespr V2)s oor Epicgpns (V) }

List of Encrypted hashes: E, (Hash(CM*)?) corresponding to each Verification

kspm

card ID (vc;y) in the Verification Card Set.
Signature of encrypted prime numbers and encrypted Hash(CM%)?2,
Administration Board X509 Certificate and Tenant CA X509 Certificate.

List of Verification Card IDs (vc;,) included in the Verification Card Set.

2) For each Verification Card ID (vc;4), computes the following values:

(o]

www.scytl.com

The derivation of the Voter Choice Return Code generation private key (k{;i) from the

CCR; Choice Return Codes generation private key (k]f) and the Verification Card ID
(veiq):

= Compute k!, = KDF(vc4||k], p length) calling the Key Derivation Function:

KDF1 specification primitive.

= Truncate the result to have 2047 bits.

» Checkthat1<k/, <q-1

= If the derived value is equal or greater than q, compute again a derivation but
using as input the derived value KDF (k/,, p length).

" kl.jd is the Voter Choice Return Code generation private key.

= Compute the Voter Choice Return Code generation public key (Kl{i) associated
to the Voter Choice Return Code generation private key (kijd) as the
k}

exponentiation of the generator g to k/,: K/, = g*ia.

Notice that as kl.’;i is computed using the Verification Card ID(vc,), it is specific per

voter.

The exponentiation of E,i., . (v1), Epkgpp (V2), o) Epgpy (vn) t0 the corresponding

Voter Choice Return Code generation private key (ki’;i :

K K k)
{EkaDM(vl) Ld’EPkSDM(UZ) ld""’EkaDM(Un) Ld}

___| e 09

Scytl sVote

Protocol Specifications

o Call the Exponentiation proof generation primitive to compute a proof of knowledge of

the exponent k;'d. The inputs of the primitive are the following:
= Base elements (group elements): [g, Epkcpn, (V1)) Epigpp, (V2D -os Epregpp, (V)]
* Exponents: [k,

= Public input (group elements):

i Jj J Jj
[Kijd' EpksDM (vl)kid' EkaDM (v2)kid' S EkaDM (vn)kid]
= Additional information “ExponentiationProof”
= Mathematical group (p,q, 9)

The proof is logged to be validated during the verification phase.

o The derivation of the Voter Vote Cast Return Code generation private key (kcl.’;i) from
the CCR; Choice Return Codes generation private key (k;) and the Verification Card ID,

the confirm text padding and the Verification Card ID (vc;y):

= Compute kc/, = KDF(vcy4||confirm||k!, p length) calling the Key Derivation
Function: KDF1 specification primitive.

= Truncate the result to have 2047 bits.

» Checkthat1<ke), <q-1

= If the derived value is equal or greater than q, compute again a derivation but
using as input the derived value KDF (kcl,, p length).

. kcl.jd is the Voter Vote Cast Return Code generation private key.

= Compute the Voter Vote Cast Return Code generation public key associated

to the Voter Vote Cast Return Code generation private key (kcl.’;i) as the
exponentiation of the generator g to kcl,: Kcl, = g*“a.

Notice that as kci’;i is computed using the Verification Card ID (vc;,), it is specific per

voter.

o The exponentiation of E,.., . (Hash(CM?)?) to the corresponding kc/,.

kspm
Epiespy (Hash(CMi4)2)k¢la

o Call the Exponentiation proof generation primitive to compute a proof of knowledge of

the exponent kci’;i. The inputs of the primitive are the following:

= Base elements (group elements): [g, Eyxg,,,

(Hash(CM%)?)]

www.scytl.com
__| T 70

Scytl sVote

Protocol Specifications

= Exponents: [kc},]

= Public input (group elements): [Kcl.’;i, EkaDM(Hash(CMid)z)kCz’é]
= Additional information “ExponentiationProof”
= Mathematical group (p,q,9)

The proof is logged to be validated during the verification phase.

o Calls the Digital signature generation primitive to sign the result of the exponentiations
and the Voter Choice Return Code generation public key (Kci’;i), using the CCR; signing
private key (skéCRj).

3) Sends the computations signed to the SDM (Print Office)

For each Verification Card Set, the SDM (Print Office):

1) Receives from each Control Component the following information (notice that every element of
the list mentioned below corresponds to one Verification Card ID (vc;;) of the Verification Card
Set):

o List of exponentiated encrypted primer numbers:

j j j
{Epkeson (90, Epiegppy (02), ., By, (0) 50}
o List of exponentiated encrypted squared hashes of Confirmation Messages:
EkaDM(HaSh(CMid)Z)k{d

o List of Voter Choice Return Code generation public key: Ki{i

o List of Voter Vote Cast Return Code generation public key: Kci’;i
o Signature of the information detailed above.
And does the following actions:

o Verify the signature of the received information using the CCR; signing certificate. Store

the public keys to be uploaded later to the Vote Verification Context. The signatures of
these keys are also kept by the SDM (which is considered as part of the Bulletin Board)
to be used by the Verifier during an audit process.

o For each Verification Card ID (vc;,) in the Verification Card Set:

= Callthe Random value generation primitive to compute a 4-digit random (short)

Choice Return Code (CC}%) for each voting option in the ballot.

= Multiply the values received from the control components:

www.scytl.com
__| T 71

www.scytl.com

Scytl sVote
Protocol Specifications

4 4
j j
{ﬂ Epk_gDM (vl)kid AN H EkaDM (‘Un)kid}
j=1 j=1

Compute the exponentiation of each element above to the Verification card

private key (k;4):

k"‘?_kj k..‘?_k!'
{Epiegpp (V1)1 Ljea i, ., Eppesprn ()14 Yi=1 ia}

For each one of the ciphertexts computed in the previous steps, call the
ElGamal decryption primitive with input the ciphertext and the Secure Data
Manager private key (skgpy). Finally, obtain the pre-Choice Return Codes

(pCie, ..., pCi) = (vk, ..., vK) where vf is:

oy)
i i i

For each pre-Choice Return Code pC/¢, concatenate it with the Verification
Card ID (vciy), the Election Event ID (eeid) and the corresponding voting
option attributes with the flag “correctness = true”. Call the Hash generation
primitive with input the concatenated value. The resultis the long Choice Return
Code:

ICCH* = Hash(pC}®||vc;q||eeid||{attributes})

For each long Choice Return Code (ICC/%), concatenate it with the Codes
Secret Key (C4), compute a hash of the result and call the Key Derivation
Function: KDF1 specification primitive to generate Choice Return Code

encryption symmetric key :
skec!® = KDF(Hash(ICC*||Cy), 256 bits)

Call the Symmetric encryption primitive to encrypt the corresponding random
Choice Return Code (CC/?) with the symmetric key skcc/® generated in the

step before: E(CC[?, skccl?).

Call the Hash generation primitive for each long choice return I[CC/* and create
an entry in the table containing the encrypted Choice Return Code, where the

entry key is the Hash of the long return code ICC/*: Hash(lCC[*) -
Enc(CC, skec!).
Call the Random value generation primitive to compute an 8-digit random Vote

Cast Return Code (VCC?).

Call the Digital signature generation primitive to sign the Vote Cast Return Code
(Vcciy and the Verification Card ID (vc;,) using the Vote Cast Return Code
Signer private key (VCCsgy).

1 e (2

Scytl sVote
Protocol Specifications

Sveeyy = Sign(VCC,VCCsg)

= Multiply the values received from the Control Components and obtain the

encrypted pre-Vote Cast Return Code:

4
HEkaDM (Hash(CM)?)<la = B, (Hash((BCK®)?ia)?)¥j=1keiq
j=1

= EkaDM (pVCCid)

= Call the ElGamal decryption primitive to decrypt the pre-Vote Cast Return

Code: Dy, (Epigpy, PVCC').

= Call the Hash generation primitive with input the concatenation of the pre-Vote

Cast Return Code with the Verification Card ID (vc;;) and the Election Event

ID (eeid). The result is the long Vote Cast Return Code:
WVCC = Hash(pVCC@||VCiy||EEID)

= Concatenate the long Vote Cast Return Code (IVCC¢) with the Codes Secret
Key (C4), and compute a hash of the result. Call the Key Derivation Function:
KDF1 specification primitive to generate Vote Cast Return Code encryption
symmetric key : skvcc'® = KDF (Hash(IVCC™||Cy), 256 bits).

= Call the Symmetric encryption primitive to encrypt the VCC and the signed

VCC™ (sycc,,) using the symmetric key: E(VCC™||sycc,,, skvee'®).

= Call the Hash generation primitive with input the IVCC® and create an entry in
the table containing the encrypted V€ C“and signed VCC@, where the entry key
is the Hash of the long Vote Cast Return Code IVCC!: Hash(IVCC'?) —

Enc ((VCCid lIsveeig)s skvccid).
Once all the computations are finished, the Codes Mapping Table contains entries for each of the

Verification Card IDs in the Verification Card Set. These entries correspond to the Choice Return Codes

and the Vote Cast Return Code assigned to each Verification Card ID (vcyy).

Additionally, the following data structure is created for each one of the Verification Card IDs in the
Verification Card Set.

www.scytl.com
__| T 73

List of [Choice Return Codes (CC, ..., €Ci4) — ballot voting option identifiers (v, ...

Scytl sVote

Protocol Specifications

Verification Card Codes

Verification Card ID (vc;q)
Election Event ID (eeid)

Ballot Casting Key (BCK'?).
Vote Cast Return Code (VCCi?)

V)]

Table 23 - Verification Card Codes

4.6.4 Verify Setup

During Setup the auditors must verify, for each Verification Card ID (vc;4), that the exponentiation proofs

computed by the Control Components during the exponentiation of the encrypted prime numbers and

the encrypted hashes of the confirmation messages, are correct. The following information should be

retrieved in order to perform the validations:

Exponentiation proofs stored in the Control Components Secure Loggers.

The encrypted prime numbers {Epx, . (V1), Epkopr, (V2)s ovs Epregpp (V)3

For each Verification Card ID (vc,):

(¢]

(o]

Epkgpy (Hash(CM')?)

Epigpyy (Hash(CM@)2ykcla

Exponentiated encrypted primer numbers

Eison V190, Epiegpyy (0258, ., g, () 50)

CCR, Voter Choice Return Code generation public key (K,
CCR, Voter Choice Return Code generation public key (K7
CCR; Voter Choice Return Code generation public key (K2,
CCR, Voter Choice Return Code generation public key (K}
CCR, Voter Vote Cast Return Code generation public key (Kc};)
CCR, Voter Vote Cast Return Code generation public key (KcZ,)
CCR; Voter Vote Cast Return Code generation public key (KcZ))

CCR, Voter Vote Cast Return Code generation public key (Kc?;)

If the validation of some of these proofs fails, the process is stopped. Otherwise, the configuration

process continues as expected.

www.scytl.com

T 4

Scytl sVote
Protocol Specifications

4.7 Create printing information

The information to be printed in each of the voting cards that will be provided to the voters before starting

the election, is the following:
e Verification Card Codes (see Table 23 - Verification Card Codes).
e Ballot (see Table 13 - Ballot).

e Start Voting Key (SVK;y).

4.7.1 Printing Information if extended authentication is used

If the extended authentication is used, the Voter Alias are included as part of the information to be
printed in each voting card. In addition, the Start Voting Key (SVK;4) is substituted by the Authentication
Key.

4.8 Generation of Vote Verification Context Information

It generates the set of configuration information related to a Verification Card Set that should be stored

in the Vote Verification Context. The set of information is grouped as follows:
e Verification Card Data (see Table 22 - Verification Card Data).

e Verification Card Set Control Components Data:

Verification Card Set Control Components Data

- Election Event ID (eeid)

- Verification Card Set ID (vcs;q)

- Listof:
- Verification Card ID (vc;q)
- CCRy Voter Choice Return Code generation public key (K%,
- CCR, Voter Choice Return Code generation public key (K2,
- CCR; Voter Choice Return Code generation public key (K3,
- CCR, Voter Choice Return Code generation public key (K7,
- CCR, Voter Vote Cast Return Code generation public key (Kc};)
- CCR, Voter Vote Cast Return Code generation public key (Kc?;)
- CCR3 Voter Vote Cast Return Code generation public key (Kc3;)
- CCR, Voter Vote Cast Return Code generation public key (Kc},;)

Table 24 - Verification Card Set Control Component Data

e Verification Card Set Data:

www.scytl.com
__| T 75

Scytl sVote
Protocol Specifications

Verification Card Set Data

- Election Event ID (eeid)

- Verification Card Set ID (vcs;q)

- Choice Return Codes Encryption public key (pkccgr)
- Verification Card Set Issuer Certificate

- Vote Cast Return Code Signer Certificate

Table 25 - Verification Card Set Data

e Codes Mapping Table Context Data:

Codes Mapping Table Context Data

- Set of (Verification Card ID (vc;4) — Codes Mapping Tables)

Table 26 - Codes Mapping Table Context Data

e Vote Verification Context Data:
- Election Event ID (eeid)
- Verification Card Set ID (vcs;q)
- Signed CCR, Choice Return Codes Encryption public key (pkccg,)
- Signed CCR; Choice Return Codes Encryption public key (pkccg,)
- Signed CCR;3 Choice Return Codes Encryption public key (pkccg,)
- Signed CCR, Choice Return Codes Encryption public key (pkccg,)
- Codes Secret Key KeyStore
- Codes Secret Key password (encrypted with the Vote Verification Context System public key)

- Encryption parameters

- Election Key ID

Table 27 - Vote Verification Context Data

4.9 Generation of Voter Materials Context Information

It generates the set of configuration information related to a Voting Card Set that should be stored in the

Voter Material Context. The set of information is the following:

e Voter Information: list of resource identifiers that will be assigned to a voter using a specific
Voting Card

www.scytl.com
__| T 76

Scytl sVote
Protocol Specifications

Voter Information ‘

Contains one row per Verification Card ID (vc;4) with the following information:

Election Event ID (eeid)
Ballot ID (bid)

Ballot Box ID (bbid)

Voting Card Set ID (veds;y)
Voting Card ID (ved;q)
Credential ID (c;q)

Verification Card Set ID (vcs;y)

Verification Card ID (vc;q)

Table 28 - Voter Information

Credential Data: credential data associated to each Voting Card, to be provided to the voter
during the authentication phase (see Table 21 - Credential Data)

4.10 Generation of Extended Authentication Context Information

Generates the set of configuration data related to every Voting Card that should be stored in the

Extended Authentication Context.

Extended Authentication Information

Authentication ID

Election Event ID (eeid)
Credential ID (c;q)
PBKDF2(ChallengeAnswer, Salt)
Salt

Encrypted Start Voting Key

Table 29 - Extended Authentication Data

4.11 Password protection

The election KeyStores password should be encrypted using the corresponding system context public

keys. Before starting the election, the system context KeyStores passwords will be manually introduced

or requested to the password manager, to open the KeyStores that contains the private keys to decrypt

the election KeyStores passwords.

Ballot box KeyStore password encrypted with the Tenant Election Information Context System

public key (TEL).

Authentication Token Signer KeyStore password encrypted with the Tenant Authentication

Context System public key (TAC,;).

www.scytl.com
__| T 7

Scytl sVote
Protocol Specifications

e Choice Return Codes Encryption KeyStore password encrypted with the Tenant Vote

Verification Context System public key (TVVpk).

e Code Secret key KeyStore encrypted with the Tenant Vote Verification Context System public
key (TVVyy).

4.12 Administration Board signhature at configuration

4.12.1 Administration Board private key reconstruction

The members of the Administration Board enter their smartcards in the computer where the SDM is
executed (e.g., Print Office or Canton environment). Only the threshold number of shares is required to
reconstruct the key, although more shares can be used. To compute the reconstruction of the key, the
Shamir Threshold Secret Sharing reconstruction algorithm is called.

For each share, its digital signature is verified using the Administration Board public key (AB,) in the

X.509 certificate.

e Certificate validation: In case the X.509 certificate of the AB had to be previously downloaded

from the Administration Portal, the chain of certificates should be verified up to the root.
Then, it should be verified that the reconstructed private key is correct:

e Private key verification: Call the Digital signature generation primitive to sign a test message
with the reconstructed key and verify it using the AB certificate. If the validation is correct, the

reconstructed key is also correct.

4.12.2 Datato sign
The following data packs should be signed by the Administration Board using the Digital signature
generation primitive before uploading it to the corresponding online voting platform component. A

precondition for this step is that the Administration Board has been constituted.
e Authentication Voter Data (see Table 9- Authentication Voter Data)
e Authentication Context Data (see Table 10 - Authentication Context Data)
e Election Information Context Data (see Table 11 - Election Information Context Data)
e Voting Workflow Context Data (see Table 12 - Voting Workflow Context Data)
For each Ballot Box one signature of:
e Ballot Box Information (see Table 14 - Ballot Box Information)
e Ballot Box Context Data (see Table 15 - Ballot Box Context Data)
e Ballot Box Voter Data (see Table 16 - Ballot Box Voter Data)

For each Verification Card Set ID (vcs;;), one signature of:

www.scytl.com
__| T 78

Scytl sVote
Protocol Specifications

e Verification Card Data (see Table 22 - Verification Card Data)
e Verification Card Set Data (see Table 25 - Verification Card Set Data)

e Verification Card Set Control Components Data (see Table 24 - Verification Card Set Control

Component Data)

e Codes Mapping Tables Context Data (see Table 26 - Codes Mapping Table Context Data)

e Vote Verification Context Data (see Table 27 - Vote Verification Context Data)
For each Ballot ID (bid), one signature of the ballot (see Table 13 - Ballot).
For each Voting Card Set ID (vcds;y), one signature of:

e Voter Information (see Table 28 - Voter Information)

e Credential Data (see Table 21 - Credential Data)

e Extended Authentication Data (see Table 29 - Extended Authentication Data)
For each electoral authority one signature of:

e Electoral Authority Data (see Table 17 - Electoral Authority Data)

e Election Key Data (see Table 18 - Election Key Data)

4.13 Administration Board signature verification at configuration

When the configuration information is uploaded to a context / service, its signatures should be verified,
using the Administration Board certificate previously uploaded to the Certificate Registry. The upload is

successful only if the signatures are verified.

The configuration information needed to verify the AB signature should be stored in the context/service,

so that it can be verified in future (not just during upload).

Note: It should be verified that the configuration has been signed by an AB which is entitled to do so,

issued by the Tenant for which the election event has been created.

5 Voting phase

This phase starts when the voter enters the Start Voting Key (SVK,;) into the application. Then the

following steps are executed:

e Protocol GetlD algorithm: Obtains the voter’s identifier (Credential ID (c;4)) from the Start Voting
Key (SVK;y).

e Authentication: The voter is authenticated in the system using the challenge-response

mechanism. At the end of the process, the voter receives an Authentication Token that is

www.scytl.com
__| T 79

Scytl sVote
Protocol Specifications

included and validated in every request that the voting client sends to the voting server. They

also receive all the necessary information to cast their vote.

e Protocol GetKey algorithm: Obtains the KeyStore password (KSkey;;) from the Start Voting Key

(SVK;y) to retrieve the Verification Card private key (k;4)
e Send avote:

o Protocol CreateVote algorithm: The voters select their voting options and the voting

client encrypts them using the Election public key (EL,,). Partial Choice Return Codes
are computed using the Verification Card private key (k;;) and they are also encrypted.
Cryptographic proofs linking the contents of both ciphertexts are generated. The whole

vote is signed and sent to the voting server.

o Protocol ProcessVote algorithm: The vote is validated both by the voting server and by

the Control Components.

o Protocol CreateCC algorithm: The pre-Choice Return Codes are computed after the

interaction between the Voting Server and the Control Components. This protocol

defines which are the operations done by these system components.

o Protocol CreateRC algorithm: The short Choice Return Codes are retrieved from the

mapping table given the pre-Choice Return Codes computed by the previous algorithm.

o Generate receipt and store the vote: If the short Choice Return Codes are correctly

retrieved, they are sent to the voter, the receipt is generated, and the vote is stored in
the Ballot Box. The voter checks that the short Choice Return Codes received

correspond with the options selected.

e Protocol GetCC algorithm: In case the voter logs out after sending the vote and then logs in

back, the system returns the short Choice Return Codes.
e Confirm a vote:

o Protocol Confirm algorithm: The Confirmation Message is computed from the Ballot

Casting Key (BCK'?) introduced by the voters to confirm their vote. The information is

signed and sent to the voting server.

o Protocol ProcessConfirm algorithm: The Confirmation Message is validated by the

voting server and the short Vote Cast Return Code is retrieved from the mapping table
after the interaction among the voting server and the Control Components. If the short
Vote Cast Return Code is correctly retrieved, it is sent to the voter together with the

vote and the receipt.

e Client-side receipt validation: The voting client validates the receipt and the voter checks that

the short Vote Cast Return Code received corresponds with that code in the Voting Card.

www.scytl.com
| e Ry

Scytl sVote

Protocol Specifications

In case any step of the processes described in this section fails due to a validation failure, or to a request

for a non-existing resource, the process stops, the error is logged and forwarded to the voter. An error

message is sent to the client context (in the event the error happened in the server-side), which shows

an error message in the screen. The voter will then have to log out and start the process again from the

last successful point:

e In case the vote was stored successfully, and the Choice Return Codes sent to the client, the

voter starts in the confirmation page where Choice Return Codes are shown on the screen after

login.

e In case the vote and the confirmation were stored successfully, the voter starts in the last page

where the Vote Cast Return Code and optionally the receipt and the signature are shown after

login.

e Incase an error was found in the vote structure after the vote was stored, and the Choice Return

Codes were not successfully recovered, the voter will be blocked, and an error will be displayed.

5.1 Protocol GetID algorithm

Voter

Voting Client

Extended
Authentication
Context

1. Enter Authentication Key
(and challenge)

—
2. Derive the Auth ID and the
< keystore password

3. Send AuthID, EEID (and challenge)>

5. Send E(SVK)

—
4. Retrieve E(SVK)

<_I

a

L
6. Decrypt E(SVK)

—
7. Derive Credential ID

‘_1

Figure 16 - Protocol GetID

1) The voter enters the Authentication Key (Start Voting Key (SVK;;) or a list of secrets) and an

optional challenge into the application. The voter has a limited number of attempts (the

maximum number of attempts is 5) to introduce the answer to the challenge. If the maximum

number is reached, the voting card is blocked.

2) From the Authentication Key entered, the Client Context:

www.scytl.com

a) Calls the Password-based key derivation function with the following inputs:

o Password: Authentication Key value

81

3)

4)

5)

6)

7)

Scytl sVote
Protocol Specifications

o Salt: concatenation of the string ‘authlD’ and the Election Event ID (eeid)
The result is the Auth ID.
b) Calls the Password-based key derivation function with the following inputs:
o Password: Authentication Key value

o Salt: concatenation of the string ‘authPassword’ and the Election Event ID
(eeid)

The result is the KeyStore password.

Sends the Auth ID, the Election Event ID (eeid) and the challenge (if needed) to the server-

side.

The Extended Authentication Context receives the Auth ID, the Election Event ID (eeid), the

Tenant ID and the challenge (if needed) and does the following actions:

a) Retrieves the extended authentication information (AuthenticationID,
PBKDF2(ChallengeAnswer, Salt), Salt, Encrypted(SVK?)) using the Auth ID, the
Election Event ID (eeid) and the Tenant ID.

b) Checks that the number of attempts does not exceed the maximum number of attempts
allowed. When the value reaches the maximum, the entry for the Auth ID is set to
BLOCKED.

c) Calls the Password-based key derivation function with the following inputs:
o Password: Challenge Answer value.
o Salt: salt stored in the extended authentication information.

d) Compares the computed value with the PBKDF2(ChallengeAnswer, Salt) retrieved. If

the comparison is ‘false’, increase the number of attempts.
The Extended Authentication Context sends the Encrypted (SVK4)) to the Client Context.

The Client Context calls the Symmetric decryption primitive to decrypt the encrypted SVK using

the KeyStore password derived from the Authentication Key.

The Client Context calls the Password-based key derivation function with the following inputs:
a) Password: Start Voting Key (SVK;y)-
b) Salt: concatenation of the string ‘credentialid’ and the Election Event ID (eeid).

and obtains the Credential ID (c;4).

www.scytl.com
| T e 02

5.2 Authentication

Scytl sVote

Protocol Specifications

Voter Material
Context

Authentcation
Context

Voting Client

Voting Workflow
Context

Election
Information
Context

Vote Verification
Context

<

3. Request Credential Data

1. Send Credential ID, EEID
and Tenant ID

2. Send Credential ID, EEID
and Tenant ID

-

11, Request Voter Data

4, Generate Server Challenge
o

5. Send Server Challenge

6. Send Server Challenge

<4

7. Verify Server Challenge and
‘ generate Client Challenge

8. Send Client Challenge

9. Send Client Challenge

—
10. Validate Client Challenge
b

12.. Validate election is open

\ 4

—
13. Generate Authentication Token

14. Send Authentication Token

18. Send Authentication Token
and retrieved information

[
15. Update Voting Card State
<+

17. Request Verification Card
Data and Verification Card Data

16. Request Ballot and Ballot
Box Voter Data

Set

|
<

|
19. Validate Authentication Token
b

Figure 17 - Authentication

In this phase, the Client Context and the Authentication Context engage in an authentication protocol.

After that, the Authentication Context will issue an Authentication Token to the voter and provide the

information to the Client Context necessary for performing the following steps of the protocol, depending

on the status of the voter in the system. We divide the authentication process in two steps:

e Challenge-response mechanism.

e Authentication token generation.

521

Challenge-response mechanism

1) The Client Context sends the Credential ID (c;4), the Election Event ID (eeid) and the Tenant
ID to the Voting Workflow Context.

2) The Voting Workflow Context receives the Credential ID (c;4), the Election Event ID (eeid)

and the Tenant ID and sends them to the Authentication Context.

3) The Authentication Context receives the Credential ID (c;4), the Election Event ID (eeid) and

the Tenant ID and asks for the corresponding Credential Data to the Voter Material Context

using the Credential ID (c;4), the Election Event ID (eeid) and the Tenant ID. In case the

Credential Data entry is not present, an error message is created and forwarded to the client

www.scytl.com

83

Scytl sVote
Protocol Specifications

context, which shows an error message to the voter. The voter is instructed to restart the

process.

4) Once the Authentication Context has received the Credential Data, it generates a Server

Challenge Message in the following way:
a) Calls the Random value generation primitive to generate a value of 16 bytes.
b) Generates a timestamp with the current time.

c) Callsthe Digital signature generation primitive to sign the timestamp, the server random
value, the Credential ID (c;4;) and the Election Event ID (eeid) using the Authentication

Token Signer private key (ATsgy).

d) The Server Challenge Message is composed by the server timestamp, the server

random and the signature in base64 format.

5) The Server Challenge Message, the Credential Data and the set of Certificates corresponding

to that Election Event ID (eeid) is sent to the Voting Workflow Context.
6) The Voting Workflow Context sends the information to the Client Context.
7) The Client Context:
a) Verifies the certificate validity and the certificate chains of the certificates received:

o [Election Event Root CA]
o [Authentication Token Signer, Services CA, Election Event Root CA]
o [Administration Board Certificate, Tenant CA, Platform Root CA]
o [Credentials CA, Election Event Root CA]
o [Credential ID Auth, Credentials CA, Election Event Root CA]
o [Credential ID Sign, Credentials CA, Election Event Root CA]

b) Validates the signature over the Server Challenge Message values (server random,
server timestamp, Credential ID (c¢;;), Election Event ID (eeid)), using the
Authentication Token Signer public key (ATs,x) from the corresponding certificate in

the set received.

c) Check that the Credential ID (c;;) from the Server Challenge Message matches the

one in Credential Data.
d) Calls the Password-based key derivation function with the following information:
o Password: Start Voting Key (SVK;4)
o Salt: concatenation of the string ‘KeyStorepin’ and the Election Event ID (eeid)

The result is the KeyStore symmetric encryption key (KSkey;,).
www.scytl.com
- e 84

Scytl sVote
Protocol Specifications

e) Opens the KeyStore from Credential Data using the KeyStore password (KSkey;s),
retrieving:
o The Credential ID authentication (k¢,,) and Credential ID signing (k¢,,) private

keys.
o The X.509 certificates associated and their certificate chains.
f) Generates a Client Challenge Message in the following way:
o It calls the Random value generation primitive to generate a value of 16 bytes.

o It signs it together with the Server Challenge signature using the Credential ID

authentication private key (k¢,) and calling the Digital signature generation
primitive.
8) Sends the Client Challenge Message, the Credential ID Authentication certificate, the Credential
ID (c;4), the Election Event ID (eeid) and the Tenant ID to the Voting Workflow Context.

9) The Voting Workflow Context sends the information to the Authentication Context.
10) The Authentication Context verifies the information sent by the Client Context:

a) Validates the certificate chain (Credential ID Auth Certificate, Credentials CA
Certificate, Election Event Root CA).

b) Validates the signature over the Server Challenge Message values (server random,
timestamps, Credential ID (c;4) and Election Event ID (eeid)) using the Authentication

Token Signer public key (AT'sy).

c) Verifies that the difference between the current time and the timestamp in the Server
Challenge Message is not greater than the challenge-response expiration time (already

set in the context).

d) Validates that the Credential ID (c;4) of the request matches the Credential ID (c;4)

contained in the Credential ID Authentication Certificate.

e) Validates the signature over the Client Challenge Message values (client random value,
server challenge signature), using the public key in the Credential ID Authentication
Certificate.

5.2.2 Authentication Token generation
11) In case any of the previous actions/validations fail, the application stops and an error is logged
and forwarded to the client context, which shows an error message to the voter. The voter is
instructed to restart the login process. If not, the Authentication Context asks for voter-related
data to the Voter Material Context.

www.scytl.com
__| T 85

Scytl sVote
Protocol Specifications

12) The Authentication Context validates if the election is still open asking the Election

Information Context.

13) If the validation is successful, the Authentication Context prepares the Authentication Token:

a)

b)

c)

d)

Calls the Random value generation to generate the Authentication Token ID as a value
of 16 bytes.

Generates a timestamp with the current time.

Generates an Authentication Token containing the Voter Information, a timestamp and
the Authentication Token ID.

Calls the Digital signature generation primitive to sign the Authentication Token using

the Authentication Token Signer private key (AT'sgy).

14) The Authentication Context sends the Authentication Token back to the Voting Workflow

Context.

15) The Voting Workflow Context using the Voting Card ID (vcd,;) in the Authentication Token,

retrieves the voting card state and initializes it.

16) Using the Ballot ID (bid) and the Voting Card ID (vcd;,) in the Authentication Token, and the

Election Event ID (eeid) and the Tenant ID from the request, the Voting Workflow Context

retrieves the Ballot, the ballot text and the Ballot Box Voter Data with their corresponding

signatures from the Election Information Context.

17) Using the Verification Card ID (vc;4) and the Voting Card ID (vcd;,;) in the Authentication Token,

and the Election Event ID (eeid) and the Tenant ID from the request, the Voting Workflow

Context retrieves the Verification Card Data (Verification Card KeyStore and Signed verification

card public key), the Verification Card Set Data (Choice Return Codes Encryption public key

(pkccr), Verification Card Set Issuer Certificate, Vote Cast Return Code Signer Certificate) and

their signatures from the Vote Verification Context.

18) The Voting Workflow Context sends the Authentication Token, the Ballot, the Ballot Texts, the

Ballot Box Voter Data, the Verification Card Data, the Verification Card Set Data and their

signatures, to the Client Context.

19) The Client Context:

a)

b)

www.scytl.com

Signer certificate.

Checks that the fields Election Event ID (eeid), Credential ID (c;;), Ballot ID (bid),
Ballot Box ID (bbid) and Verification Card ID (vc;y) in the Authentication Token are

consistent with the other data already known or received.

___| e 56

Scytl sVote
Protocol Specifications

c) Checks that the fields Ballot ID (bid), Ballot Box ID (bbid) and Verification Card ID

(vc;q) in the Authentication Token are consistent with the other data already known or

received (i.e., that the Ballot received has the same Ballot ID (bid)).

d) Checks whether the Ballot ID (bid) of the received Ballot is the same as that in the

Ballot Box Voter Data.

e) In case any of the previous validations fail, the application stops, and an error message

is shown to the voter. The voter needs to log out and start the logging process again.

5.3 Protocol GetKey algorithm

1) Calls the Password-based key derivation function with the following information:

a) Password: Start Voting Key (SVK;4).

b) Salt: Concatenation of the string ‘keystorepin’ and the Election Event ID (eeid).

The result is the KeyStore symmetric encryption key (KSkey;q).

2) Uses the KeyStore symmetric encryption key (KSkey;,;) KeyStoreto open the KeyStore in the

Verification Card Data and recover the Verification Card private key (k;;).

5.4 Send avote

5.4.1 Protocol CreateVote algorithm

Voting Client

Voting Workflow

Context

— 1

[1

<_1

L

1

‘_l

1. Encrypt Vote
2. Compute partial choice return codes

3. Encrypt partial choice return codes
4. Generate cryptographic proofs

—
5. Digitally sign the vote

6. Send vote

Figure 18 - Protocol CreateVote

After being authenticated, the ballot is presented to the voter, who selects the desired voting options.

Then, the following steps are executed:

www.scytl.com
__|

T 3 T

Scytl sVote

Protocol Specifications

1) Compress the prime numbers received (which represent the selected voting options) by
multiplying them together. The result will be encrypted using one of the components of the

election public key contained in the Ballot Box Voter Data. If write-ins are allowed:

a) The prime numbers associated with the write-ins that have been filled by the voter, are

compressed together with the other received primer numbers.

Note: The primer numbers associated with the write-in fields only indicates that the field

has been filled in but does not give any information about the text inside the write-in.

b) The content of each write-in field will be encrypted using one component of the Election
Key (different from the one used to encrypt the product of primer numbers). Before
encrypting the content should be translated into a number of the given mathematical

groups. For this, one proposal is to:

o transform the write-in field text (in UTF-8) to a fixed length number encoding,
e check that this value is not bigger than g from the encryption parameters, and
e raise the value to 2 and compute mod p. This will be the value provided to the
encryption.
Note: This specification assumes each write-in can be encoded as a numeric value
smaller than 2047 bits.

On the other hand, regarding the number of elements of the election public key, the only
limit we know so far is the smartcard storage which forces us to use 60 maximum write-

ins. The protocol is not limiting the number of write-ins at all.

Call the EIGamal encryption primitive® with input the compressed prime numbers, the write-ins

(wy, ..., wy) and the Election public key (ELg,lk), ELSZ)). Obtain the following ciphertext:

"
E = (g7, (ELY) - 1_[v, (ELZ) - wy, (ELE) - wy, o, (ELED) - wy)
i=1

If write-ins are allowed, the ciphertext E; must have the same number of elements (m) for every
voter whether they have filled in the write-ins or not. In case the voter has not filled the write-in

field, the string “2” is encrypted.

2) For each one of the voting options {vi}lf’zl, compute a partial Choice Return Code pCC} using

the Verification Card private key (k;;) of the voter represented by the Verification Card ID (vc;,):

pCCld = vikid mod p (where p is taken from the encryption parameters)

No partial Choice Return Codes are generated for the write-in contents.

3 If the election key contains more elements than the number of options to be encrypted, the unused elements are multiplied and
used as the last element of the key.

www.scytl.com
| T e 08

Scytl sVote
Protocol Specifications

3) Call the EIGamal encryption primitive to encrypt all the partial Choice Return Codes with the
Choice Return Codes Encryption public key (pkccz) contained in the received Verification Card
Set Data.

’ ! . r’ . ' .
E, = (9", (pkige) -pCCE, (pk) - pCCit, ., (pkE)) - pCCE)
The vote sent must include, for each encrypted partial Choice Return Code, the correctness ID

corresponding with that voting option with the flag “correctness = true”.

4) Generate cryptographic proofs linking the encrypted partial Choice Return Codes and the

encrypted product of primes:
a) Call the Schnorr proof generation primitive with the following inputs:
e Base element (group element): g
e Exponent: r
e Public input (group element): g"

e Additional information: “SchnorrProof:Voter ID =" concatenated with the
value of the Voting Card ID (vcd;;) concatenated with “Election Event ID ="

concatenated with the value of the Election Event ID (eeid).
e Mathematical group (p,q, g9)
The result is the Schnorr proof (7.,).
b) Call the Exponentiation proof generation primitive with the following inputs:
"o
e Base elements (group elements): [g, g7, (Ekal) T2, vl
e Exponents: [k;4]
. - kia

e Public input (group elements): [Kid,(gr)kid,((Ekal) 12, Vi)]
o Additional information “ExponentiationProof"
e Mathematical group (p,q, 9)

The result is the Exponentiation proof (.,).

c) Call the Plaintext Equality proof generation primitive with the following inputs:

ke
e Primary Ciphertext: [(gr)"id,((Ekal)r .]'[}"=1 Vi) d].
e Primary public key: [E Ly,]

e Primary randomness: [r - k;4]

www.scytl.com
| T e 09

Scytl sVote
Protocol Specifications

Secondary Ciphertext: [gr',H}"zl(pkéiC)R)r - pCClH)

Secondary public key: []'[;”=1 pkgC)R]

Secondary randomness: [r’]

Additional information “PlaintextEqualityProof™"
e Mathematical group: (p,q, 9)

The result is the Plaintext Equality proof (mezenc)-

5) Call the Digital signature generation primitive to sign the following information using the

Credential ID signing private key (k¢,,):

a)

b)
<)
d)
e)

f)

The encrypted vote (E,):
e The encrypted compressed primes
e The encrypted write-ins value
List of correctness IDs
The Schnorr proof
The Verification Card public key signature
The Authentication Token signature

The Voting Card ID (vcd,;;) and the Election Event ID (eeid).

6) The following information is sent to the Voting Workflow Context:

a)
b)
c)
d)
e)
f)
9)
h)

www.scytl.com

The encrypted vote (E,)

The encrypted partial Choice Return Codes (E,)
List of correctness IDs

The Verification Card public key (K;4)

The Verification Card public key signature
Digitally signed vote

The Credential ID signing certificate

The Credential ID (c;4)

Cryptographic proofs (s, Texps Tpieqenc)
Ciphertext exponentiations

The Authentication Token

___| e 90

Scytl sVote

Protocol Specifications

5.4.2 Protocol ProcessVote algorithm

Election
Information
Context

Vote Verification Control
Context Components

Authentication Voting Workflow
Context Context

Bulletin Board

1. Send Authentication Token

A

2. Validate Authentication Token
[1

3. Check Voting Card Status
4]

4. Send Vote

»

—
5. Validate Vote

6. Send Vote

[1
7. Validate vote
8. Send Vote

A 4

—
9. Verify vote proofs

9 Send Vote

Figure 19 - Protocol ProcessVote
The following actions happen at the server-side, when a vote is received:

1) The Voting Workflow Context sends the Authentication Token to the Authentication Context

to be validated.
2) The Authentication Context:

a) Validates the signature of the Authentication Token, using the Authentication Token
Signer certificate.

b) Checks that the fields Tenant ID, Election Event ID (eeid), Voting Card ID (vcd;y), in
the Authentication Token are consistent with the Voting Card ID (vcd;4) and Election
Event ID (eeid) provided.

c) Verifies that the Authentication Token has not expired.

In case any of the previous actions/validations fail, the application stops and an error is logged
and forwarded to the client context, which shows an error message to the voter. The voter is
instructed to restart the login process.

3) If the validations of the Authentication Token are successful, the Voting Workflow Context
checks the status of the Voting Card.

4) Only if the Voting Card status is NOT SENT, the vote is sent to the Election Information
Context to be validated.

5) The Election Information Context:
a) Validates that the Ballot Box is not blocked.

b) Verifies if the election is out of period checking the current timestamp against the
election dates from the election event configuration.

www.scytl.com
__| T 91

Scytl sVote

Protocol Specifications

c) Performs the following validations over the Vote:

Vi.

Vii.

viii.

Xi.

Checks that the Credential ID signing certificate (which is provided together
with the Encrypted Vote) is issued for the same Credential ID (c;;) which is

provided as a parameter.

Validates the certificate chain: [Credential ID signing Certificate, Credentials
CA, Election Event Root CA]

Verifies the digital signature over the values in the vote, the Authentication
Token signature, the Verification Card public key signature, the Voting Card 1D
(vcd;y) and the Election Event ID (eeid), using the Credential ID X.509 signing
certificate (which is provided together with the Encrypted Vote).

Checks that the Election Event ID (eeid), Tenant ID, Voting Card ID (vcd;y),
Ballot Box ID (bbid), Ballot ID (bid) and Credential ID (c;4), inside the vote

match the corresponding IDs in the request and in the vote.

Checks that the Credential ID (c;;) who signs the vote is the same Credential

ID (c;q) from the request.
Checks that the ciphertext elements are group elements.

Checks that the number of votes cast by the voter does not exceed the

maximum number of allowed votes per voting card and authentication token.

Verifies that the encrypted vote contains the correct number of elements:
number of write-ins that can be filled in the ballot (the number of voting options
with the label “writein”) plus 2 (the first element of the ciphertext and the

encrypted compressed primes).

Validates the number of elements of the encrypted partial Choice Return
Codes, against what is defined by the election configuration, using the

attributes sent with the vote.

Uses the function encryptedCorrectnessRule defined in the ballot to validate
that the number of selected options, including blank selections, is equal to the

maximum established.

Verifies that a vote is not already stored for that Voting Card ID (vcd,).

If all the validations are successful, a hash of the vote is stored to verify later (after the

Choice Return Codes computation) that the vote that is going to be saved in the Ballot

Box was correctly validated by the system. In case any of the previous

actions/validations fail, the application stops and an error is logged and forwarded to

the client context, which shows an error message to the voter. The voter is instructed

to restart the login process.

www.scytl.com

___| e O

Scytl sVote
Protocol Specifications

6) If the validations performed in the Election Information Context are successful, the vote is sent

to the Vote Verification Context.
7) The Vote Verification Context:

a) Verifies the digital signature of the Verification Card public key (K;;) using the

Verification Card Set Issuer certificate.

8) In case any of the previous actions/validations fail, the application stops and an error is logged
and forwarded to the client context, which shows an error message to the voter. The voter is
instructed to restart the logging process. If validations are successful, the Vote Verification

Context broadcasts the information to every Control Component (CCR;).
9) Each Control Component (CCR;) does the following actions:

a) Checks if the voter has already sent a vote. If this is the case, the Control Component
stops the process, logs an error and forwards it to the client context, which shows an
error message to the voter. In this way, we prevent the Control Components from
computing more than once the Choice Return Codes for that voter and we avoid an

attack coming from the server.

b) Verifies the Schnorr proof (), the Exponentiation proof (m,,,) and the Plaintext
Equality proof (mpeqenc) - In case any of the previous actions/validations fail, the
application stops and an error is logged and forwarded to the client context, which
shows an error message to the voter. The voter is instructed to restart the logging

process.

c) Logs the vote (only the fields included in the signature) and its signature in a format that

the signature could be validated by an external process.

www.scytl.com
| e 03

Scytl sVote
Protocol Specifications

5.4.3 Protocol CreateCC algorithm

Vote Verification Control

Context Components Bulletin Board

1. Exponentiate encrypted partial
choice return codes and sign
< computations

. Send hash of computations.
2. Send computations [T >

3. Verify computations and
obtain encrypted pre Choice
< Return Codes
4. Send encrypted pre Choice
Return Codes

[1

5. Compute partial decryption
— and proof
1

6. Digitally sign the computations

. Send hash of computations
7.8end computations [Tttt >

[1
8. Verify computations and
decrypt pre Choice Return Codes
‘_I

Figure 20 - Protocol CreateCC

The Choice Return Codes are generated between the Vote Verification Context and the Control

Components:

1) Each Control Component (CCR;) does the following actions:

a) Derives the Voter choice return code generation private key (kl.’;i) from the
corresponding CCR; choice return code generation private key (k;) and the Verification

Card ID (vciy):

i. Computes kijd = KDF(ch-de}, p length) calling the Key Derivation Function:

KDF1 specification primitive.
ii. Truncates the result to have 2047 bits.
iii. Checksthat1<kl, <q—1

iv. If the derived value is equal or greater than g, compute again a derivation but

using as input the derived value KDF (k/,, p length).

V. ki"d is the Vote choice return code generation private key.

b) Computes the exponentiation:

’ K
J ’ 1y i " i ld
Ezkld = (gr) (pkE'C)R) . pCC{d, ey (pk((;gze) : pClebd)

www.scytl.com
__| T 94

Scytl sVote
Protocol Specifications

and calls the Exponentiation proof generation primitive to compute a proof of knowledge

of the exponent ki’;i. The inputs of the primitive are the following:
o Base elements (group elements): [g, E;]

Exponents: [k7,

@]

; id
Public input (group elements): [K.,, E,* ']

@)

o Additional information “ExponentiationProof™
o Mathematical group (p,q,9)
The result is agCRj.
c) Calls the Digital signature generation primitive to sign the exponentiated ciphertext
EZ"{d and the aéCRj using the CCR; signing private key (skéCRj).
d) Stores the Verification Card ID (vc;y) in the database as an evidence that Choice
Return Codes have been already computed for that voter.
2) Sends the signed information to the Vote Verification Context.
3) The Vote Verification Context receives the following signed information from each Control
Component: {(E, "¢, adcr,); (B>, 0dcr,); (B4, 0dcr,); (E;"4, 0lcr,)) and:

a) Retrieves the signed Choice Return Code generation public keys (K, K2, K3, Kiy
stored in Verification Card Set Control Components Data associated to the Verification
Card ID vcyy.

b) Verifies the signatures and the proofs, multiplies the exponentiated ciphertexts Ez"{d

and obtains the encrypted pre-Choice Return Codes

4 _
J Ik 1)\ k 'k

[et = (o7 5 " ot i)

j=1

where k = X4 k, and k = k;, - k.
4) The Vote Verification Context sends gr"ﬁ to the control components to obtain the partial

decryption.

5) Each Control Component receives gr"k from the Vote Verification Context and uses its

private key share (skélc)Rj, ...,,ské‘gj) to compute the partial decryption:
{gr'~skélc)Rj- k- gr'~skg£}ej~ IAc}
They also compute a proof of knowledge (oCZCRj) of the private key skélc)Rj, ...,,sk?’g,{j but prior to

the computation the following values are calculated:

www.scytl.com
__| T 95

Scytl sVote
Protocol Specifications

a) Compressed CCR; Choice Return Codes Encryption private key: skglc)Rj + et sk?f%j

b) Compressed CCR; Choice Return Codes Encryption public key: pk(l) -pk(z)

CCR; CCR;
@)
pkcczej

. sk k- sk k- k@) %

c) Compressed exponentiated gammas: g <" .g TR ..g TR =

r' k- (sk(lR +- +skg’b}?)

Calls the Exponentiation proof generation primitive with the following inputs:

a) Base elements (group elements): [g, g" ¥]
b) Exponents: [CompressedSecretKey]

c) Public input (group elements):

[CompressedPublicKey, CompressedExponentiatedGammas]
d) Additional information “ExponentiationProof™"
e) Mathematical group (p,q,9)

The result is Ugc;e,--
6) Calls the Digital signature generation primitive to sign the partial decryption and the proof using

the CCR; signing private key (skgCRj).

7) The signed information is sent to the Vote Verification Context.

8) The Vote Verification Context receives the following signed information from each Control

r sk((:lC)R k- r skg’g? k 1 . .
Component: { g yer d J 1, 0ccr; and does the following actions:

a) Retrieves the Signed CCR; Choice Return Codes generation public keys

(gki,gké, g"é, gk"t) stored in the Verification Card Set Control Components Data to verify

the proofs (Uclczelf GC1€R2' UCICRy ‘7616124)
b) Verifies the signatures and the proofs.

c) Multiplies all the partial decryptions and obtains the decrypted pre-Choice Return

Codes {pC}d}il for each voting option:

4 (1)
g skélc)R k | |g_r SkCCR

]:

P

[y

IS

@)
@) 5 —-r'.sk
g—r SkCCR k — CCR]

i

—.
1l
fuy

www.scytl.com

] 96

Scytl sVote
Protocol Specifications

) @ . - .
Note that as pkélc)R = gs"CICR, ...,pkffg = g®kcer, if the server multiplies every ciphertext

element by its corresponding partial decryption element, the pre-Choice Return Codes

{PCiid}i | are obtained:

. (1)
pClld = 17{‘ = g_r"SkCCR'

=

wN\TE g
’ (kaCR "

;e
; 2 -k
id _ ok _ —r'skW kN Rk
pCy =vy =g ccr' ¥ - (pkeeg) Yy
5.4.4 Protocol CreateRC algorithm
Voting Worflow Bechl Vote Verification
Voter Voting Client 9 Information Bulletin Board
Context Context
Context
!
1. Retrieve short Choice Return
2. Send short Choice Return
B Codes < Codes
<
—
3. Update Voting Card
< ! Status
[1
4. Generate receipt
5. Send short Choice Return
5. Show short Choice Codes Send vote and CCs computations
L Retun Codes [~ | T
6. Check short Choice
Return Codes

Figure 21 - Protocol CreateRC

Once the pre-Choice Return Codes are obtained, the Vote Verification Context does the following

actions per Verification Card ID (vc;y):

1) Looks for the Codes Mapping Table corresponding to the Verification Card ID (vc;;) and Election

Event ID (eeid) and for each pre-Choice Return Code pC/® = vk:

a) Concatenates it with the Verification Card ID (vc;y), the Election Event ID (eeid) and
the corresponding voting option attributes with the flag “correctness = true”. Call the
Hash generation primitive with input the concatenated value. The result is the long

Choice Return Code:

ICCH* = Hash(vk¥||vciq||[EEID||{attributes})

www.scytl.com
__| T 97

2)

3)

4)

5)

6)

7

5.4.5

Scytl sVote
Protocol Specifications

e For each long Choice return Code, call the Hash generation primitive to
compute the hash of the long Choice Return Code (ICC/%) concantenated with
the Codes Secret Key (C,) and call the Key Derivation Function: KDF1
specification to generate the Choice Return Code encryption symmetric key
skcc!® = KDF(Hash(ICC!||Cy,), 256 bits).

e Retrieves the encrypted short Choice Return Code from the mapping table
using Hash(ICC!%) and calls the Symmetric decryption primitive to decrypt it

using skcc/®. The result is the short Choice Return Code to be sent to the voter.

b) Checks that all the retrieved short Choice Return Codes are different. If not, interrupt

the process and send a validation error.

The short Choice Return Codes and the computations done by the Control Components are

sent to the Voting Workflow Context.

If the short Choice Return Codes are correctly retrieved, the Voting Workflow Context updates
the status of the voting card to SENT BUT NOT CAST.

The Election Information Context stores the vote, the Control Components computations and
generates the receipt (see next section).

The Choice Return Codes are sent back to the Voting Client, which displays them in the screen.

The voter checks, using his/her voting card, that the Choice Return Codes received are those
corresponding with the voting options selected.

In case of any error in the validations/generation, Choice Return Codes do not have to be sent
back to the Voting Client.

Generate receipt and store vote

The Election Information Context generates the receipt and stores the vote and receipt in the Ballot

Box: It does the following:

1)

2)

3)

4)

5)

Verifies that the vote was correctly validated checking if there is a hash of that vote stored.

Computes a Receipt from the vote: It calls the Hash generation primitive and computes a hash
of the vote signature, the authentication token signature, the verification card public key

signature, the Election Event ID (eeid) and the Voting Card ID (vcd,y).

Calls the Digital signature generation primitive to sign the Receipt using the Ballot Box Signer
private key (BBsf,f iy,

Checks that the vote that is going to be stored has been validated.

Stores the vote (Tenant ID, Election Event ID (eeid), Ballot ID (bid), Ballot Box ID (bbid),
Voting Card ID (vcd;,;), Credential ID (c;4), Verification Card ID (vc;,), Verification Card Set ID

www.scytl.com
| e e

Scytl sVote

Protocol Specifications

(ves;q), encryption voting options, encrypted partial Choice Return Codes, Control Components

computations (those sent in step 2) and 7) of Protocol CreateCC algorithm), list of correctness

IDs, verification card public key (K;,;), verification card public key signature, vote signature,

Credential ID signing certificate, Authentication Token, Authentication token signature,

cryptographic proofs, ciphertext exponentiations), the digitally Signed Receipt and the signed

authentication token in the Ballot Box.

In case any of the previous actions/validations fail, the application stops and an error is logged and

forwarded to the client context, which shows an error message to the voter. The voter is instructed to

restart the login process.

5.5 Protocol GetCC algorithm

The system allows the voter to log out after sending the vote, and to log back in to see the Choice Return

Codes again and confirm their vote. In this case, after authentication, the corresponding vote and Control

Components computations are obtained from the Ballot Box and the voting server does the following:

1. Obtain the encrypted pre-Choice Return Codes as it is done in step 3.b.

2. Obtain the decrypted pre-Choice Return Codes as it is done in step 8.c.

3. Repeat the steps defined in section 5.4.4.

Using the computations stored in the ballot box we avoid the Control Components from computing the

Choice Return Codes more than once for the same voter.

5.6 Confirm avote

5.6.1 Protocol Confirm algorithm

Voter

Voting Client

Voting Workflow
Context

1. Enter Ballot Casting Key

g

<._J

<_I

L

1
2. Validate Ballot Casting Key
3. Compute Confirmation Message

4. Sign Confirmation Message

5. Send Confirmation Message

Figure 22 - Protocol Confirm

The following steps are followed to confirm a vote:

1) The voter enters the Ballot Casting Key (BCK'®).

www.scytl.com
__|

99

2)

3)

Scytl sVote

Protocol Specifications

The Client Context uses the checksum algorithm to validate the Ballot Casting Key (BCK?).

If the validation is successful, the Client Context squares the Ballot Casting Key (BCK¢) and

raises it to the Verification Card private key (k;;): (BCK4)?*ida mod p (where p is taken from the

encryption parameters). This is the Confirmation Message: CM¢ = (BCK®¢)?*ia,

4)

Calls the Digital signature generation primitive to sign the Confirmation Message together with

the Authentication Token signature, the Voting Card ID (vcd;;) and the Election Event ID (eeid)

using the Credential ID signing private key (k¢,).

5)

The exponentiated Confirmation Message, its signature, the Credential ID (c;4), the Credential

ID signing certificate and the Authentication Token are sent to the Voting Workflow Context

Context.

5.6.2

Protocol ProcessConfirm algorithm

Authentication
Context

Voting Workflow

Election

Context

Information

Voting Client

Context

Vote Verification

Control

Context

Components

Bulletin Board

1. Send Authentication Token

—
2. Validate Authentication Token
-

16. Send Vote, Receipt and short Vote Cast Return Code

o]

—
3. Check Voting Card Status
-

14. Send Vote, Receipt and short
Vote Cast Return Code

4. Send Confirmation Messaga.

1
&. Validate Confirmation
¢ Message
6. Send Confirmation Message

12. Send short Vote Cast Return
Cods

7. Send Confirmation Message

9. Send computations

—
10. Verify computations and
obtain encrypted pre Vote Cast
PP - Return Code
!
11. Retrieve the short Vote
< Cast Return Code

13. Store short Vote Cast Cade
and CCs computations

1
15. Update Voting Card Status

____Send Confirmation Message _

8. Exponentiate confirmation
message and sign computations
1

Send hash of computations

-»

13. Send vote and receipt

Figure 23 - Protocol ProcessConfirm

Upon receipt of a confirmation message from a voter, the server-side takes the following steps:

1) The Voting Workflow Context sends the Authentication Token to the Authentication Context

to be validated.

2) The Authentication Context:

www.scytl.com

Signer certificate.

a) Validates the signature of the Authentication Token, using the Authentication Token

e 1 00

Scytl sVote
Protocol Specifications

b) Checks that the fields Tenant ID, Election Event ID (eeid), Voting Card ID (vcd,y), in
the Authentication Token are consistent with the Voting Card ID (vcd;;) and Election
Event ID (eeid) provided.

c) Verifies that the Authentication Token has not expired.

3) If the validation of the Authentication Token is successful, the Voting Workflow Context

checks the status of the Voting Card.

4) Only when the Voting Card status is SENT BUT NOT CAST, the confirmation message is sent
to the Election Information Context to be validated.

5) The Election Information Context validates the confirmation message in the following way:
a) Validates that the Ballot Box is not blocked.

b) Checks that the Voting Card ID (vcd,;) has not confirmed a vote yet and that exists a

vote pending to confirm for that Voting Card ID (vcd;y).

c) Checks that the Credential ID signing certificate (which is provided together with the
Confirmation Message) is issued for the same Credential ID (c;;) which is provided as

a parameter.

d) Validates the certificate chain: [Credential ID signing Certificate, Credentials CA,
Election Event Root CA].

e) Verifies the digital signature over the Confirmation Message, the Authentication Token
signature, the Voting Card ID (vcd;;) and the Election Event ID (eeid) using the

Credential ID signing certificate.

f) Checks that the Election Event ID (eeid) signed with the Confirmation Message

matches with the Election Event ID (eeid) received from the request.

g) Verifies that the Voting Card ID (vcd;;) signed with the Confirmation Message

corresponds with the Voting Card ID (vcd;;) provided in the request.
h) Checks that the Confirmation Message is a group element.

i) Verifies if the election is out of period checking the current timestamp against the

election dates from the election event configuration.

In case any of the previous actions/validations fail, the application stops and an error is logged
and forwarded to the client context, which shows an error message to the voter. The voter can
log out and log in, and the steps of GetID, Authentication and GetCC are executed. After that,
the voter is presented with the confirmation screen and they can restart the confirmation

process.

6) Ifvalid, itis checked whether the maximum number of confirmation attempts has been reached.

If so, the protocol stops, an error is returned to the client context, which shows it to the voter.

www.scytl.com
- s 101

Scytl sVote
Protocol Specifications

From this point, the voter is blocked and cannot proceed to confirm their vote. If not, the counter

is increased, and the confirmation message is sent to the Vote Verification Context.

7) The Vote Verification Context then broadcasts the information to every Control Component
(CCRy).

8) Each Control Component (CCRy):

a) Checks if the choice return codes have been previously computed for that. If this is not
the case, the Control Component stops the process, logs an error and forwards it to the
client context, which shows an error message to the voter. In this way we prevent the

Control Components from processing a confirmation of a vote that has not been cast.

b) Checks if the maximum number of confirmation attempts has been reached. If so, the
protocol stops, an error is logged and returned to the client context, which shows it to

the voter. If not, the counter is increased and the process continues.

c) Logs the confirmation message and its signature in a format that the signature could be

validated by an external process using the information logged.

d) Derives the Voter Vote Cast Return Code generation private key (kci’;i) from the
corresponding CCR; choice return codes generation private key (k;) , the confirm text

padding and the Verification Card ID (vc;y):

o Computes kc/, = KDF(vcq||confirm||k], p length) calling the Key Derivation

Function: KDF1 specification primitive.
e Truncates the result to have 2047 bits.
o Checksthat 1 < ke), <q—1

o If the derived value is equal or greater than q, it computes again a derivation

but using as input the derived value KDF (kc,, p length)
o kcl.jd is the Voter Vote Cast Return Code generation private key.
e) Computes the squared hash and then the exponentiation of the result:
(Hash(CM)?)<<ta

and calls the Exponentiation proof generation primitive to compute a proof of knowledge

of the exponent kc/,. The inputs of the primitive are the following:
e Base elements (group elements): [g, Hash(CM'4)?]
o Exponents: [kc/,]

e Public input (group elements): [Kc{;i, (Hash(CM@)?)kcijd]

www.scytl.com
- e 102

Scytl sVote
Protocol Specifications

o Additional information: “ExponentiationProof"
e Mathematical group (p,q, 9)

The result is a(?CRJ..

f) The exponentiation and the proof ogCRj are signed using the CCR; signing private key
(Skg‘CRj)'
9) The signed information
{((Hash(CM@)2 Y¥ela, 0); (Hash(CM®)? Yeela, o3y);
((Hash(CM'®)? Y¥ia, 03, ; ((Hash(CM@)2)*ia, 6)}
is sent to the Vote Verification Context.

10) The Vote Verification Context:

a) Retrieves the signed Voter vote cast return generation public keys
(Kck, KcZ, Kc3y, Kty inthe Verification Card Set Control Components Data associated

to the voter vc;y.

b) Verifies the signatures and the proofs, multiplies the exponentiated squared hashes of

the Confirmation Message and obtains the pre-Vote Cast Return Code.

4
pvCCid = H(Hash(CMid)z)’“i’d = (Hash(CM?)?)ke

j=1
h T — V4 J
where kc = Y-, kcjy.

11) Given the pre-Vote Cast Return Code, the Vote Verification Context does the following

actions:

a) Looks for the Codes Mapping Table corresponding to the Verification Card ID (vc;y)
and Election Event ID (eeid).

b) Calls the Message Authentication Code generation primitive the concatenation of the
pre-Vote Cast Return Code (pVCC™) with the Verification Card ID (vc;;) and the
Election Event ID (eeid). The result is the long Vote Cast Return Code:

IVCC™ = Hash(pVCC@||vcyy||EEID)

c) Computes the hash of the concatenation of the long Vote Cast Return Code (IVCC%)
and the Codes Secret Key (Cy,). Then, calls the Key Derivation Function: KDF1
specification to generate Vote Cast Return Code encryption symmetric key: skvccié =
KDF (Hash(lVCC™@||Cg), 256 bits).

www.scytl.com
- s 103

d)

e)

f)

Scytl sVote

Protocol Specifications

Calls the Hash generation primitive to compute the hash of the long Vote Cast Return
Code: Hash(lVCC**) and find the corresponding value in the table: Hash(IVCC') —
Enc(VCC@||signedVCC, skvcc'®).

Calls the Symmetric decryption primitive to decrypt the ciphertext
Enc(VCC¥||signedVCC¥, skvcc'?) using the corresponding symmetric key and obtain

the Vote Cast Return Code and its signature: VCC™@, signedVCC“.

Verifies the signature over the retrieved Vote Cast Return Code using the Vote Cast

Return Code Signer public key (VCCspy).

In case any of the previous actions/validations fail, the application stops and an error is logged

and forwarded to the client context, which shows an error message to the voter. The voter can

log out and log in, and the steps of GetID, Authentication and GetCC are executed. After that,

the voter is presented with the confirmation screen and they can restart the confirmation

process.

12) The short Vote Cast Return Code together with its signatures and the Control Components

computations are sent to the Election Information Context.

13) The Election Information Context stores the Vote Cast Return Code, its signature and the

Control Component computations in the Ballot Box and retrieves the vote and the receipt.

14) The vote and the receipt are sent to the Voting Workflow Context.

15) The Voting Workflow Context changes the status of the voting card from “SENT BUT NOT
CAST” to “CAST".

16) The Voting Workflow Context sends the receipt, the vote and the Vote Cast Return Code to
the Client Context.

5.7 Client-side receipt validation

The Client Context validates the received information and shows the Vote Cast Return Code to the

voter: The Client Context:

1) Verifies the signature of the Signed Receipt, using the Ballot Box Signer public key (BBs:,’,f"d)

2) Calls the Hash generation primitive to compute the hash of the Vote Signature, the

Authentication Token signature, the Verification Card public key signature, the Election Event

ID (eeid) and the Voting Card ID (vcd,y). It verifies that this value corresponds with the receipt

value received.

3) Verifies that the vote received is the same as the vote sent, if it is still present in memory.

Otherwise, it verifies that:

www.scytl.com

___| s | 04

a)

b)

d)

e)

Scytl sVote
Protocol Specifications

The signature of the vote received validates successfully using the Credential ID signing

public key (K¢, ,);

The signature of the Authentication Token from the vote received validates successfully

using the Authentication Token Signer public key (AT's,y);

The Election Event ID (eeid) and the Voting Card ID (vcd;4) in the Authentication Token
from the vote received match those from the Authentication Token received from the

authentication process.

Verifies that the Voting Card ID (vcd,;,) signed with the Vote Cast Return Code matches

the one in the received vote.

Verifies the signature of the Vote Cast Return Code using the Vote Cast Return Code

Signer public key (VCCspy).

If all the verifications succeed, the Vote Cast Return Code is shown to the voter on the screen, and

optionally the receipt and signature (in case of the Canton of Neuchétel, the receipt is shown on the

screen, in case of Fribourg, the receipt is not shown). Otherwise, the process stops and an error is

shown on the screen.

5.8 Reguest Vote Cast Return Code and Receipt

The system allows the voter to log out after casting the vote, and then log in back to see the Vote Cast

Return Code and the Receipt again. In this case, after the steps defined in the protocol GetID and in the

Authentication phase are done, the corresponding Vote Cast Return Code and Receipt are obtained

from the Ballot Box and the steps defined in the section 5.7 are repeated.

www.scytl.com

1 e 1 05

Scytl sVote

Protocol Specifications

6 Counting phase

6.1 Protocol Tally algorithm
The following diagram is an overview of the Tally algorithm. The modules involved in this protocol are
the Election Information Context, the Mixing Control Components (CCM;,CCM,,CCM5,CCM,), the

Election Administration and the Bulletin Board.

Election

Information CCM1 ccM2 ‘ cem3 ‘ ccm4 Election

Bulletin Board Administration

Context

Cleanse Ballot Bax

Send Cleansed Ballot Bax

Validate Baliot Box signature
P
Wix Ballot Box
-~
F—
Generats mixing proots
-
Partially Decrypt Mixed Ballot Box
i
F—
Generate decryption proofs
-
Generate remaining Election Key
F—=
Sign computations
-

le Send hash of computations

Send computations.
|- Send CCM1 computations __ (ot

Send CCM1 computations

—
Validate Ballot Box signature
-
F=
Mix Ballat Box
lg—i
Generate mixing praofs
F=
Partially Decrypt Mixed Ballot Box
o)
—
Generate decryption proofs
[Push
.
Generate remaining Election Key
-
=
Sign computations.

b Send hash of computations.

... e CCM2 computations, [

Send computations

Send GCMZ computations ~

—
Vakdate Ballot Box signature
—

Mix Baliot Box

tsl

Generala mixing proofs

?

Partially Decrypt Mixed Baliot Box

?

=
Generate decryption proafs
-

Sign computations
Send hash of computations

Send camputations
Send GCM3 computations 4
Send CCM1, CCM2, CCM3
computations and Cleansed
Ballot Box

—
Validate Ballot Boxes signatures

Validate mixing procfs

tt

Validate decryption proofs

?

Reconstruct Electoral Board private key

T

Mix Ballot Bax

t

Generste mixing proofs

T

Decrypt Mixed Ballot Box

A

Generste decryption proofs.
-

Factarize prime numbers and

Sand computations l4— recover write ins.
-
Sendprime numbers and wile-ns
—
Generate election results
e Send slaction results -

Figure 24 - Counting phase overview

As explained in section 0, each voting system component has a local Bulletin Board where the audit

data is stored, and the information of these local Bulletin Boards is then compiled to a global Bulletin

www.scytl.com
- s 1 06

Scytl sVote
Protocol Specifications

Board (Audit System component). For simplicity, we are not going to refer to each local Bulletin Board

but to a global one.

6.1.1 Cleansing

The Cleansing process makes sure that only confirmed votes (i.e.: those for which the voters entered a
valid Ballot Casting Key (BCK4)) are considered during the mixing and decryption processes. In
addition, it ensures that in case there is more than one vote per Voting Card ID (vcd;4), none of them
are considered in further phases. Actually, this validation is already done by the server during the voting
phase, so it is not necessary in this step and for this reason the Cleansing only discards unconfirmed
votes. Then, it removes all the information from the valid votes except for the encrypted voting options,

which will be processed by the mixing and the decryption.

As the first part of the mixing and decryption processes is done in the online Control Components, the

Cleansing is executed online in the Voting Server. The following lists are generated:

e List of non-confirmed votes: list of Voting Card IDs, timestamps and receipts that correspond to
non-confirmed votes.

e List of successful votes: list of Voting Card IDs, timestamps and receipts corresponding to the

valid and confirmed votes.
e List of ciphertexts (encrypted options) corresponding to valid votes.

The list containing the encrypted options will be the Cleansed Ballot Box, that is, the input of the mixing

process.

When cleansed Ballot Boxes are requested from the first Control Component to be mixed, the first step

is to sign them in the server-side, to protect their integrity.

Each Ballot Box has an opening and closing time configured inside the election period. A regular Ballot
Box cannot be sealed and exported from the server until the election period ends. However, during the
configuration it is possible to create Ballot Boxes for testing purposes, which can be sealed and exported

before the Ballot Box closing time has passed.

The Cleansed Ballot Box is signed together with a timestamp, the Election key, the Tenant ID, the
Election Event ID (eeid) and the Ballot Box ID (bbid), using the Election Information Signing private key
(E13,). Both the list of successful votes and the list of failed votes are signed during the Ballot Box export

process (see section 6.2).

The whole Ballot Box must be validated in the verification phase, that is, it should be checked that only
non-confirmed votes were discarded during the cleansing and that the confirmed ones were valid (i.e.:

valid vote signature, valid zero knowledge proofs, ...).

6.1.2 Mixing and Decryption

Control Components will perform mixing and partial decryption sequentially.

www.scytl.com
- s 107

Scytl sVote
Protocol Specifications

The mixing process breaks the correlation between the votes collected in the Ballot Boxes and the votes
to be decrypted, by shuffling and re-encrypting them. It also produces proofs of the correct computation
of the mixing process. The decryption of the votes requires a collaboration between the online Control
Components (CCM,, CCM,, CC M) and the offline Control Component CCM,.

The Electoral Board members provide their shares of the Electoral Board private key (EBg) to the
cCM,, where the private key reconstructed using the Shamir Threshold Secret Sharing reconstruction
algorithm. At that point, the votes in the Ballot Boxes are decrypted and the result factorized (according
to the voting options they could be composed of) to obtain the individual voting option values

representing the voter’s selections.

Similar to the mixing process, the decryption process also produces zero knowledge proofs of correct
computation.

For the description to be clearer, we will differentiate between the first, the second, the third and the last

Control Component.

6.1.2.1 First Control Component (CCM,)
The first Control Component CCM, receives as input the following parameters:

e Cleansed Ballot Box.

e Signature of Cleansed Ballot Box, Election key, Tenant ID, Election Event ID (eeid), Ballot Box
ID (bbid) and timestamp.

e Election Information Signing Certificate.
e Election public key (EL)
And does the following actions:

1) Validate the signature of the Cleansed Ballot Box using the Election Information Signing public
key (ELy)-

2) Validate the Certificate chain [Election Information Signing Certificate, Platform Root CA].
3) Mix the Cleansed Ballot Box:

a) Calls the EIGamal ciphertexts permutation primitive with input the Cleansed Ballot Box.

The result is the permuted Cleansed Ballot Box.

b) For each ciphertext in the permuted Cleansed Ballot Box, call the ElGamal Re-
encryption primitive with input the ciphertext and the Election key (inside the
corresponding Ballot Box Voter Data). The result is the permuted and re-encrypted
Cleansed Ballot Box.

4) Create a Mixed Ballot Box CCM; with the Ballot Box ID (bbid) and the set of permuted and re-

encrypted votes.

www.scytl.com
- s 1 08

Scytl sVote

Protocol Specifications

5) Call the Mixing proof generation primitive to generate the cryptographic proofs to demonstrate
that the shuffled and re-encrypted votes in the Mixed Ballot Box CCM; are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (bbid).

6) For each ciphertext in the Mixed Ballot Box CCM,, call the EIGamal decryption primitive with
input the ciphertext and the Control Component CCM, Mixing private key (x;).

7) Create a Partially Decrypted Ballot Box CCM, with the Ballot Box ID (bbid) and the set of
partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box CCM,, call the Decryption proof
generation primitive with the following inputs:

a) Control Component CCM; Mixing public key (g*1).
b) Ciphertext.

c) Partially decrypted ciphertext.

d) Control Component CCM,; Mixing private key (x;).
e) Mathematical group.

The output is the decryption proofs 7., .

9) When votes are partially decrypted, the contribution of the CCM; Mixing private key (x,) in the
Election public key is removed. This means that the next Control Component performs the

mixing using the remaining Election public key and this key is computed in the CCM,:
Election public key: ELy, = (ELpk,, ELpy o ELpi,) = (gEBsetLj=1%] gEBsictLjoax] GEBsictLjoax]'y
Remaining Election public key:
EL%,k _ (gEBsk+ZJ3-=1X]1- 'g—x%'gEBsk+2j7’:1X§ 'g—x%’ ___'gEBsk+z§:1x}" _g_xgn)
— (gEBsk+x%+x§‘gEBsk+x%+x§’ m’gEBsk+x£"+x§")

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp
together with the Cleansed Ballot Box, Mixed Ballot Box CCM,, the Partially Decrypted Ballot
Box CCM,, the Mixing proof, the Decryption proofs, the Remaining Election Key, the Election
key, the Election Event ID (eeid), the Ballot Box ID (bbid) and an identifier of the Control

Component, using the CCM, signing private key (skgcy,)-
11) The following information is sent to the next Control Component:
a) Mixed Ballot Box CCM; and mixing proof.
b) Partially Decrypted Ballot Box CCM; and decryption proofs.

c) Remaining Election key E L,

www.scytl.com
- I 1 09

Scytl sVote
Protocol Specifications

d) CCM, Mixing public key (g*1).
e) CCM, signing certificate and CCM, CA certificate.

f) Signature of the timestamp, Cleansed Ballot Box, Mixed Ballot Box CCM,, Partially
Decrypted Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining Election Key,
Election key Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the
Control Component CCM;.

6.1.2.2 Second Control Component (CCM,)

The second Control Component CCM, receives as input the following parameters:
e Cleansed Ballot Box, Mixed Ballot Box CCM; and Partially Decrypted Ballot Box CCM,.
e Mixing proof and Decryption proofs

e Signature of the timestamp, Mixed Ballot Box CCM;, Partially Decrypted Ballot Box CCM,,
Mixing proof, Decryption proofs, Remaining Election Key, Election Event ID (eeid), Ballot Box
ID (bbid) and an identifier of the Control Component CCM;.

e (CM, signing certificate, CCM; CA certificate and Platform Root CA.
e (CCM; Mixing public key (g**).
e Remaining Election public Key: EL},,C
e Election public key: ELyy.
and does the following actions:

1) Validate the signature of the output of the previous Control Components using the CCM, signing
public key (pkécy,)-

2) Validate the certificate chain [CC M, signing certificate, CCM; CA, and Platform Root CA].

3) Mix the Partially Decrypted Ballot Box CCMj:

a) Call the EIGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box CCM,. The result is the permuted Partially Decrypted Ballot Box CCM;.

b) For each ciphertext in the permuted Partially Decrypted Ballot Box CCM,, call the
ElGamal Re-encryption primitive with input the ciphertext and the remaining Election
Key: EL},,(. The result is the permuted and re-encrypted Partially Decrypted Ballot Box
CCM,.

4) Create a Mixed Ballot Box CCM, with the Ballot Box ID (bbid) and the set of shuffled and re-

encrypted votes.

www.scytl.com
- s 1 10

Scytl sVote
Protocol Specifications

5) Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate
that the shuffled and re-encrypted votes in the Mixed Ballot Box CCM, are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (bbid).

6) For each ciphertext in the Mixed Ballot Box CCM,, call the ElIGamal decryption primitive with
input the ciphertext and the Control Component CCM, Mixing private key (x,).

7) Create a Partially Decrypted Ballot Box CCM, with the Ballot Box ID (bbid) and the set of
partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box CCM,, call the Decryption proof

generation primitive with the following inputs:
a) Control Component CCM, Mixing public key (g*2).
b) Ciphertext.
c) Partially decrypted ciphertext.
d) Control Component CCM, Mixing private key (x,).
e) Mathematical group.

The output is the decryption proofs 7., .

9) When votes are partially decrypted, the contribution of the CCM, Mixing private key (x,) in the
Election key is removed. This means that the next Control Component performs the mixing

using the remaining Election key and this key is computed in the CCM,:
Actual Election public key: ELy, = (gEBS"+ZJ3'=1x11' -g‘x%,gEBS"J'Z?ﬂ"JZ' g, ...,gEBS"J'Z?ﬂx;‘n)
Remaining Election public key: EL2, = (gEBsk”%*x% . g2, gEBskchxiHxs L gmxg | gEBsktal4xy g™
— (gEBSk+x§ gEBSk+x§ gEBSk+x§n)

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp
together with the Partially Decrypted Ballot Box CCM;, Mixed Ballot Box CCM,, the Partially
Decrypted Ballot Box CCM,, the Mixing proof, the Decryption proofs, the Remaining Election
Key, the Election Event ID (eeid), the Ballot Box ID (bbid) and an identifier of the Control

Component, using the CCM, signing private key (skgCR}.).
11) The following information is sent to the next Control Component:
a) Mixed Ballot Box CCM, and mixing proof.
b) Partially Decrypted Ballot Box CCM, and decryption proofs.
¢) Remaining Election public keys: ELy,, EL5,

d) CCM, Mixing public key (g*2).

www.scytl.com
- s s 1 11

Scytl sVote
Protocol Specifications

e) CCM, signing certificate and CCM, CA certificate.

f) Signature of the timestamp, Partially Decrypted Ballot Box CCM;, Mixed Ballot Box
CCM,, Partially Decrypted Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining
Election Key, Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the
Control Component CCM,.

6.1.2.3 Third Control Component (CCM;)

The third Control Component CCM; receives as input the following parameters:

Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCM, and Partially Decrypted Ballot Box
CCM,.

Mixing proof and Decryption proofs

Signature of the timestamp, Partially Decrypted Ballot Box CCM;, Mixed Ballot Box CCM,,
Partially Decrypted Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining Election Key,
Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the Control Component CCM,.

CCM, signing certificate, CCM, CA certificate and Platform Root CA.
CCM, Mixing public key (g*2).

Remaining Election public Key: EL},;, ELy

and does the following actions:

1)

2)

3)

4)

5)

Validate the signature of the output of the previous Control Components using the CCM, signing

certificate.
Validate Certificate chain [CCM, election signing, CCM, CA, and Platform Root CA].
Mix the Partially Decrypted Ballot Box CCM,:

a) Call the EIGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box CCM,. The result is the permuted Partially Decrypted Ballot Box CCM,.

b) For each ciphertext in the permuted Partially Decrypted Ballot Box CCM,, call the
ElGamal Re-encryption primitive with input the ciphertext and the remaining Election
Key: ELf,k. The result is the permuted and re-encrypted Partially Decrypted Ballot Box
CCM,.

Create a Mixed Ballot Box CCM; with the Ballot Box ID (bbid) and the set of shuffled and re-

encrypted votes.

Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate
that the shuffled and re-encrypted votes in the Mixed Ballot Box CCM; are the same that those

in the input Ballot Box. Put them in a file together with the corresponding Ballot Box ID (bbid).

www.scytl.com
- | 12

Scytl sVote
Protocol Specifications

6) For each ciphertext in the Mixed Ballot Box CCMs, call the EIGamal decryption primitive with
input the ciphertext and the Control Component CCM; Mixing private key (xs3).

7) Create a Partially Decrypted Ballot Box CCM; with the Ballot Box ID (bbid) and the set of
partially decrypted votes.

8) For each ciphertext in the Partially Decrypted Ballot Box CCM;, call the Decryption proof

generation primitive with the following inputs:
a) Control Component CCM; Mixing public key (g*3).
b) Ciphertext.
c) Partially decrypted ciphertext.
d) Control Component CCM; Mixing private key (x3).
e) Mathematical group.

The output is the decryption proofs ., .

9) Notice that when votes are partially decrypted the contribution of the CCM; Mixing private key
(x3).in the Election key is removed. In this case, the remaining Election key will be directly the

Electoral board public key (EB,). and it is not necessary to compute it.

10) Create a timestamp, and call the Digital signature generation primitive to sign the timestamp
together with the Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCM,, the Partially
Decrypted Ballot Box CC M, the Mixing proof, the Decryption proofs, the Remaining Election
Key, the Election Event ID (eeid), the Ballot Box ID (bbid) and an identifier of the Control

Component, using the CCM; signing private key (skgcu,)-
11) The following information is sent to the next Control Component:
a) Mixed Ballot Box CCM; and mixing proof
b) Partially Decrypted Ballot Box CCM; and decryption proofs
c) CCM; Mixing public key (g*2)
d) CCMs; signing certificate and CCM; CA certificate

e) Signature of the timestamp, Partially Decrypted Ballot Box CCM,, Mixed Ballot Box
CCM,, Partially Decrypted Ballot Box CCM;, Mixing proof, Decryption proofs, Election
Event ID (eeid), Ballot Box ID (bbid) and an identifier of the Control Component CCM;.

6.1.2.4 AuditorVerify algorithm
Before performing the last mixing and decryption in the last Control Component CCM,, blocks 1, 2 and
3 from the Verifier tool [3] must be run (except the ones requiring the data provided by the offline control

component) in order to ensure the privacy of the process.

www.scytl.com
- s 1 13

Scytl sVote

Protocol Specifications

This tool will receive as input the following information:

e Ballot Box, Mixed Ballot Box CCM,, Partially Decrypted Ballot Box CCM;, Mixed Ballot Box
CCM,, Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCM;, Partially Decrypted Ballot
Box CCM,

e (CM,;, CCM, and CCM; Mixing and Decryption proofs

e (CM,;, CCM, and CCM; Mixing public keys (g*1, g*z, g*3).
e Election public key (ELyy).

e Remaining Election public Keys: EL},;, ELy,

e (CM,;, CCM, and CCM4 Signing Certificates

e (CM,, CCM, and CCM,; CA Certificates

e Platform Root CA

e Election Information Signing Certificate

e Signature of the timestamp, Cleansed Ballot Box , Mixed Ballot Box CCM,, Partially Decrypted
Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining Election public Key, Election
public key, Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the Control
Component CC M, Signature of the timestamp, Partially Decrypted Ballot Box CCM,, Mixed Ballot
Box CCM,, Partially Decrypted Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining
Election public key, Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the
Control Component CCM,.

e Signature of the timestamp, Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCM,,
Partially Decrypted Ballot Box CC M, Mixing proof, Decryption proofs, Election Event ID (eeid),
Ballot Box ID (bbid) and an identifier of the Control Component CCM,.

and will perform the following validations:
e Validate Certificate chains [CCM; signing certificate, CCM; CA, and Platform Root CA].
e Validate Certificate chain [Election Information Signing Certificate, Platform Root CA]

e Validate the signature of the output of the previous Control Components using the

corresponding CCM; signing certificate.

e Validate the signature of the Cleansed Ballot Box using the Election Information Signing
Certificate.

e Validate CCM,, CCM, and CCM; Mixing proofs.

e Validate CCM,, CCM, and CCM; Decryption proofs.

www.scytl.com
__| T 114

Scytl sVote
Protocol Specifications

In case all the validations are successful, the process continues and the mixing and decryption in the
last node are executed. Nevertheless, if some of the validations fail, the process is stopped since either

the Voting Server or one of the Control Components have misbehaved.

6.1.2.5 Offline Control Component (CCM,)

The last Control Component CCM, receives as input the output of the previous Control Components:

e Cleansed Ballot Box, Mixed Ballot Box CCM,, Partially Decrypted Ballot Box CCM,, Mixed Ballot
Box CCM,, Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCM;, Partially Decrypted
Ballot Box CCMs5.

e (CM;, CCM, and CCM; Mixing and Decryption proofs.

e (CM,;, CCM, and CCM; Mixing public keys (g*1, g*z, g*3).
e Election public key (ELyy).

e Remaining Election public keys: ELy,, EL%,

e (CM,, CCM, and CCM; Signing Certificates.

e (CM,, CCM, and CCM; CA Certificates.

e Platform Root CA.

e Election Information Signing Certificate.

e Signature of the timestamp, Cleansed Ballot Box , Mixed Ballot Box CCM,, Partially Decrypted
Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining Election public key, Election
public key, Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the Control
Component CC M, Signature of the timestamp, Partially Decrypted Ballot Box CCM,, Mixed Ballot
Box CCM,, Partially Decrypted Ballot Box CCM,, Mixing proof, Decryption proofs, Remaining
Election public key, Election Event ID (eeid), Ballot Box ID (bbid) and an identifier of the
Control Component CCM,.

e Signature of the timestamp, Partially Decrypted Ballot Box CCM,, Mixed Ballot Box CCMs,,
Partially Decrypted Ballot Box CC M, Mixing proof, Decryption proofs, Election Event ID (eeid),
Ballot Box ID (bbid) and an identifier of the Control Component CCM,.

And does the following actions:

1) The Electoral Board private key (EBgy) is reconstructed from the shares. If the Electoral Board

private key has multiple components, all of them are reconstructed.

2) Validate the signature of the output of the previous Control Component using the corresponding

CCM; signing public key (pkéCMj).
3) Validate Certificate chains [CCM; signing certificate, CCM; CA, and Platform Root CA].

www.scytl.com
- s s 1 15

Scytl sVote
Protocol Specifications

4) Mix the Partially Decrypted Ballot Box CCMs:

a)

b)

Call the ElGamal ciphertexts permutation primitive with input the Partially Decrypted

Ballot Box CCM;. The result is the permuted Partially Decrypted Ballot Box CCMj.

For each ciphertext in the permuted Partially Decrypted Ballot Box CCM, call the
ElGamal Re-encryption primitive with input the ciphertext and the Electoral Board public
key (EBy). The result is the permuted and re-encrypted Partially Decrypted Ballot Box
CCMs.

5) Create a Mixed Ballot Box CCM, with the Ballot Box ID (bbid) and the set of shuffled and re-

encrypted votes.

6) Call the Mixing proof generation primitive to generate the cryptographic proof to demonstrate

that the shuffled and re-encrypted votes in the Mixed Ballot Box CCM, are the same that those

in the Partially Decrypted Ballot Box CCM5. Put them in a file together with the corresponding
Ballot Box ID (bbid).

7) For each ciphertext in each Mixed Ballot Box CCM,:

a)

b)

www.scytl.com

Call the EIGamal decryption primitive with input the ciphertext and the reconstructed
Electoral Board private key (EBg). The result is a product of primes representing a set
of voting options and if write-ins are allowed by the election, the process will also
recover as many elements as write-ins are specified in the ballot. The result is a product
of primes representing a set of voting options and if write-ins are allowed by the election,

the process will also recover as many elements as write-ins are specified in the ballot.

Generate a decryption proof calling the Decryption proof generation primitive with the

following inputs:
i. Electoral Board public key (EBpy).
ii. Ciphertext.
iii. Plaintext.
iv. Electoral Board private key (EBgy).
v. Mathematical group.

The product of primes is factorized according to the vote option values and the election
rules present in the ballot indicated by the Ballot Box Voter Data. The voting options
are recovered, and the following vote correctness validations are done using the

decryptedCorrectnessRule defined in the ballot:

i. The minimum selected options, excluding blank selections, is equal to, or
greater than, the minimum established (except if allow blank vote is set to true

and the whole vote is blank).

1 1 16

Scytl sVote
Protocol Specifications

i. The maximum selected options, including blank selections, is equal to, or less

than, the maximum established.

iii. The number of times that a candidate has been selected, including candidates
that belong to more than one list, is not greater than the contest’'s accumulation

value.

iv. There is no option representation (different from real candidates) that has been

selected more than once.

These correctness validations are already performed during the voting phase and
therefore, a ballot that has been successfully stored in the ballot box, cleansed, mixed

and decrypted is always supposed to pass these checks.

d) Ifwrite-ins are present in the decrypted vote, the decrypted values have to be converted

back to text:

i. Compute \/numeric message mod p
ii. Convert the result to UTF-8 representation.

The write-in texts are recovered, and the following vote correctness validations are

done:
i. The text used for write-ins does not include the special character #

ii. The representation of the write-in is included (by the system, not by the voter)

next to the written-in text, separated by #.

ii. In case the voter has used the write-in for voting for an option, the recovered
write-in will be a text. Otherwise, if the write-in has not been used, the recovered
value will be the number 2. This is done because the ciphertext corresponding
to the encrypted partial choice return codes must have the same number of

elements for every voter whether they have filled in the write-ins or not.
8) Generate the following lists for each Mixed Ballot Box, each one containing the Ballot Box ID
(bbid):
a) List of encrypted votes, decrypted votes and proofs of correct decryption.
b) List of decrypted votes for which factorization errors happened and result of the
factorization (up to the point they were factorized). Usually these errors should not

happen since the value encrypted by the voting client is the product of valid prime

numbers included in the ballot.

c) List of decrypted votes for which converting error happened, and the result of the

decryption (If write-ins are present).

www.scytl.com
- e E— 1 1 7

Scytl sVote
Protocol Specifications

d) List of individual voting option values per each decrypted vote (for the votes that could
be factorized) and the write-in text messages (if write-ins are present in the decrypted

vote).
9) The Administration Board private key (A4Bgy) is reconstructed from the shares.

10) For each of the lists, a timestamp is generated, and it is sighed together with the list and the
Ballot Box ID (bbid) and an identifier of the Decryption process, using the Administration Board

private key (ABgy).

6.2 Ballot Box export
After the mixing and decryption is done in CCM,, CCM, and CCM; the outputs are downloaded to the
last node to perform the final mixing and decryption, as it is explained in the previous section.

Additionally, the output of the cleansing and the whole ballot box are signed using the Ballot Box Signer

private key (BBs;’,i7 i) and downloaded.

e Generate a timestamp taking the current time as value. Call the Digital signature generation

primitive to sign the list of successful votes, the Closing Timestamp, the Election Event 1D

(eeid), Ballot Box ID (bbid) and Tenant ID using the Ballot Box Signer private key (BBsSb,fi")

e Generate a timestamp taking the current time as value. Call the Digital signature generation

primitive to sign the list of non-confirmed votes, the Closing Timestamp, the Election Event ID

(eeid), Ballot Box ID (bbid) and Tenant ID using the Ballot Box Signer private key (BBs_f,f“i)

e Generate a timestamp taking the current time as value. Call the Digital signature generation
primitive to sign the whole Ballot Box, the Closing Timestamp, the Election Event ID (eeid),
Ballot Box ID (bbid), the Ballot ID (bid) and Tenant ID using the Ballot Box Signer private key

bb;
(BBsg,'Y).

www.scytl.com
- s | 18

Scytl sVote

Protocol Specifications

Ballot Box ‘

Contains one row per vote with the following information:

- List of IDs: Tenant ID, Election Event ID (eeid), Ballot ID (bid), Ballot Box ID (bbid), Voting
Card ID (vcd;q), Credential ID (c;4), Verification Card ID (vc;4), Verification Card Set ID (ves;q)

- Encrypted vote (encrypted options, encrypted partial choice codes and encrypted write ins)
and its signature

- Correctness IDs

- Verification Card Public Key (K;4) and its signature

- Authentication Token and its signature

- Proofs: Schnorr proof (), Exponentiation proof (r.,,) and Plaintext Equality proof

(Tfpteqenc)
- Ciphertext exponentiations
- Credential ID signing certificate
- Receipt and its signature
- Choice Return Codes Computations

- Vote Cast Return Code Computations

- Vote Cast Code and its signature

Table 30 - Ballot Box

www.scytl.com
- s 1 19

Scytl sVote

Protocol Specifications

7 Audit phase (VerifyTally algorithm)

The following steps must be validated by the auditors in order to verify that the election results accurately
reflect the intention of legitimate voters:

1) Configuration

a) Check the encryption parameters

b) Check the voting options

c) Check the number of authentication data generated
2) Ballot Box

a) Verify the vote signature.

b) Verify the zero-knowledge proofs

i. Control Components proofs, computed during the exponentiation of the
encrypted partial choice return codes, the partial decryption of the encrypted

pre-choice return codes and the exponentiation of the confirmation message.
3) Control Components Secure Logs: (check their consistency with the contents of the Ballot Box):
a) Verify logs integrity and logs authenticity.

b) Verify that all the votes stored in the Ballot Box have been processed by the Control
Components.

c) Verify that all the votes processed by the Control Components are stored in the Ballot
Box.

d) Verify that all the confirmations stored in the Ballot Box have been processed by the

Control Components.

e) Verify that all the confirmations processed by the Control Components are stored in the
Ballot Box.

f) Verify that the Choice Return Codes have been computed only once per voter.
g) Verify that the Vote Cast Return Code has been computed, at most, 5 times.
4) Cleansing
a) Verify that only confirmed votes have been considered.
b) Verify that no confirmed votes have been removed.
5) Mixing and Decryption

a) Verify the mixing and decryption proofs to ensure that no votes have been modified,
added or removed during the mixing and decryption processes.

www.scytl.com
- s 20

Scytl sVote

Protocol Specifications

b) Verify the signature of each Mixing Control Component output.

6) Vote factorization

a) Verify that the result of the factorization corresponds to valid options in the election.

In order to perform all these validations, an auditor can use the specification given in [4] to implement

their own verifications, or use a software called Verifier [3] to check that the election outcome is correct.

This Verifier tool groups the verifications in four blocks:

1.

2.

Block 1: Pre-Election Verification: used to validate step 1).
Block 2: Ballot Box Verification: used to validate steps 2) and 3).
Block 3: Mixing Decryption Verification: used to validate steps 4), 5) and 6).

Block 4: Result Verification: used to validate correctness of the tallying and the consolidated
end results. As the results consolidation is not part of the voting protocol, it is not specified in

this document.

www.scytl.com
- s 12 1

[1]
(2]
3]
[4]
[5]
[6]

[7]

[8]
(9]

Scytl sVote
Protocol Specifications

References

S. F. Chancellery, "Federal Chancellery Ordinance on Electronic Voting (VEleS)," 2018.

S. F. Chancellery, "Annex of the Federal Chancellery Ordinance on Electronic Voting," 2018.
Swisspost, "Verifier_Detailed_specifications," 2018.

Scytl, "Scytl sVote Auditability with Control Components_3.0," 2018.

PKCS #1 v2.2: RSA Cryptography Standard.

S. Bayer and J. Groth, "Efficient Zero-Knowledge Argument for Correctness of a Shuffle," in
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012.

D. Chaum and T. Pedersen, "Wallet Databases with Observers.," in Advances in Cryptology -
CRYPTO ' 92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
1992.

A. Shamir, "How to Share a Secret," in Communications of ACM, 1979.

U. Maurer, "Unifying Zero-Knowledge Proofs of Knowledge," in Progress in Cryptology -
AFRICACRYPT 2009: Second International Conference on Cryptology in Africa, Gammarth,
Tunisia, 2009.

[10] NIST. FIPS PUB 180-4. Seure Hash Standard (SHS), August, 2015.

[11] NIST. FIPS PUB 198-1. The Keyed-Hash Message Authentication Code (HMAC), July: 2008.

[12] NIST. FIPS PUB 197. Advanced Encryption Standard (AES), November, 2001.

[13] NIST. SP 800-38D. Recommendation for Block Cipher Modes of Operation : Galois/Counter Mode

(GCM) and GMAC, November, 2007.

[14] T. Koshiba and K. Kurosawa, "Short Exponent Diffie-Hellman Problems," in Public Key

Cryptography - PKC 2004, 2004.

[15] Scytl, "PRO_SP_RS_Audit_Protocol_Control_Components_3.1," 2018.

www.scytl.com
- s 122

Scytl sVote

Protocol Specifications

9 Appendix
9.1 Cryptographic primitives
9.1.1 RSA Key pair generation
Input

e Key length: 2048 bits.

Operation

e The RSA key pair is computed according to the standard PKCS#1 v2.2 [5] with two prime

factors .

Output

e RSA key pair.
9.1.2 ElGamal Key pair generation
Input

e The mathematical group defined by (p, q, 9).

e The max number N of elements composing the key pair.
Operation

e Generate N random exponents (sky, ..., sky) smaller than the value of g using the Random

value generation primitive. These random exponents are the private key: sk = (sk, ..., Sky).
e Compute pk, = g%1,pk, = g2, ... ,pky = g**¥ all of them modulo p.
e The resultis the public key pk = (pky, ..., pky)-
Output
e The ElGamal key pair (pk, sk).
9.1.3 X509 certificate generation
Input
e CA (issuer) Private Signing Key.
e Public Key.
e Subject: Common Name, Organization, Organizational Unit and Country.
e Issuer: Common Name, Organization, Organizational Unit and Country.
o Key type.

e Validity period.

www.scytl.com
- s 123

Scytl sVote
Protocol Specifications

e Signature algorithm: RSA-PSS, SHA256, Key length: 2048 bits, Provider: SUN/Forge.
Operation
e Compose the issuer of the certificate using the issuer information provided:
o Common name
o Organization
o Organizational unit
o Country
e Compose the subject of the certificate using the subject information provided:
o Common name
o Organization
o Organizational unit
o Country
e Create a serial number:
o Call the Random value generation with input: type=byte, number=20.
e Create certificate extensions:
o Basic Constraints:
= In case key type is “CA”, flag CA=true
= In case key type is not “CA”, flag CA=false
o Key usage:
= In case key type is “CA”, key usage= keycertSign, cRLSign.
= In case key type is “Sign”, key usage= digitalSignature, nonRepudiation.

= In case key type is “Encryption”, key usage= keyEncipherment,

dataEncipherment.
e Create the public key information using:
o The public key.
o The algorithm for which its use is intended.
e Compose the to-be-signed (ths) content of the certificate, using:
o Issuer

o Subject

www.scytl.com
__| T 124

Scytl sVote

Protocol Specifications

o Serial number

o Version number

o Validity period

o Public key information
o Certificate extensions

e Call the Digital signature generation primitive to sign the tbs of the certificate using the CA

(issuer) private key, according to the defined algorithm and provider.

e Compose the X.509 certificate using the tbs content, the signature algorithm, and the signature

value.
Output
o X.509 Certificate
9.1.4 Schnorr proof generation
Input
e Base element (group element)
e Exponent
e Public input (group element)
e Additional information
e Mathematical group
Operation
e Call the Maurer’s Unified Proofs Prover primitive with the following inputs:
o Mathematical group
o The function PHI defined by:
= Number of inputs = number of exponents = 1
= Number of outputs = number of elements of the public input array = 1
= Base element
= Computation rules [(1,1)]
o Input data:
= An array of 1 group element = [Public input]
= An array of 1 exponent = [Exponent]

www.scytl.com
- s 125

Scytl sVote

Protocol Specifications

= Auxiliary string = additional information

e The result is the Schnorr Proof.
Output

e Schnorr proof
9.1.5 Exponentiation proof generation
Input

e Base Elements array of length k

e Exponent

e Public Input array of length k

e Additional information

e Mathematical group
Operation

e Call the Maurer’s Unified Proofs Prover primitive with the following inputs:

o Mathematical group
o The function PHI defined by:
= Number of inputs = number of exponents = 1
= Number of outputs = number of elements of the public input array = k
= Base elements
= Computation rules [(1,1); (2,1); ...; (k, 1)]
o Input data:
= An array of k group element = [Public input]
= An array of 1 exponent = [Exponent]
= Auxiliary string = additional information

e The result is the Exponentiation proof.

Output

e Exponentiation proof

9.1.6 Plaintext Equality proof generation
Input

e Primary Ciphertext containing k + 1 elements for some non-fixed k (k must be at least 1):

[Co, Cy, ..., Ci]

www.scytl.com
- s 126

Scytl sVote
Protocol Specifications

e Primary public key (which consists of k group elements).
e Primary randomness.
e Secondary Ciphertext containing k + 1 elements [Dy, D, ..., Dy].
e Secondary public key (which consists of k group elements).
e Secondary randomness.
e Additional information.
e Mathematical group.
Operation

e Consider the last k elements of the Primary Ciphertext and the last k elements of the Secondary
Ciphertext. Call them the Primary SubCiphertext [C;, ...,C,] and Secondary SubCiphertext
[Ds, ..., D] respectively.

e For each i from 1 to k compute C; - (D;)~* mod p. The result is the Divided Ciphertext, which

consists of k group elements.

e Compute the inverse of each element of the Secondary public key (the inverse is computed in

the mathematical group). Call the result Secondary Inverted public key.
e Call the Maurer’s Unified Proofs Prover primitive with the following inputs:
o Mathematical group.

o The function PHI defined by:

= Number of inputs = number of exponents

[PrimaryRandomness, SecondaryRandomness]|

= Number of outputs = number of elements of the public input array = [C,, Dy, C; -
(D)7Y e, G - (D)7

= Base elements: [g, PrimaryPublicKey, SecondarylnvertedPublicKey]

= Computation rules [(1,1); (1,2); 21),(2+k,2); 3,1), B+ k,2); ...; (k +
1,1), 2k + 1,2)]

o Input data:
= Anarray of k + 2 group element = [Cy, Dy, C; - (D1)7%, ..., Ci - (D) 71
= An array of 2 exponent = [PrimaryRandomness, SecondaryRandomness]|
= Auxiliary string = additional information
e The result is the Plaintext Equality Proof.

www.scytl.com
- s 12 7

Scytl sVote
Protocol Specifications

Output
e Plaintext equality proof
9.1.7 Mixing proof generation
Based on Bayer and Groth proof of a shuffle [6].

Note: This is a specification for implementing the shuffle proof, matrices rows in the original paper are

considered columns in this description and columns are considered rows.
Input
e mn
e List of encrypted votes C = {3,
e List of re-encrypted and permuted votes ¢’ = {¢;}, (where ¢/ = i) Epk (15 p1))
e List of re-encryption parameters g = {p;}}*,
e Permutation @ = {ay, ..., ay} = {m(1), ...,t(N)}
e Mathematical group (p,q, 9)
e Public key used to encrypt the votes: pk
Operation
1. Generate the commitment key ck:

o Generate a group element using the Group element generation primitive with input the

mathematical group (p,q,g). The resultis H.

o Generate as many group elements as n using the Group element generation primitive

with input the mathematical group (p, q, g). The resultis Gy, ..., G,,.
The commitment key is ck = (Gy, ..., Gy, H).

2. Given the permutation a = {a,, ..., ay} arrange it in a matrix of m rows and n columns:

al s an A—1>
A= (: :) — :
Am-1)n+1 0 AN In)

3. Commit to each row A4; (for i = 1,...,m) of the permutation matrix A using the Commitment

generation primitive with the following inputs:
o A random exponentr; € Z, between 1 and g-1 (generate it using the Random value
generation primitive)
o List of elements to be committed: 4,

o Commitment key ck = (G4, ..., Gy, H)
www.scytl.com
- s 128

Scytl sVote
Protocol Specifications

Obtain the commitment com.,. (4, ; 7).
After committing to all the rows, define the vector of commitments as
&y = (come (A1 ;1) .., come (A, ;1)) and the vector of randomness as 7 = (14, ... T,)-

4. Given the list of encrypted votes ¢ arrange them in a matrix of m rows and n columns:

(Cl vee Cn> 51
C(m—l)‘n+1 CN Em

5. Given the list of encrypted votes c' arrange them in a matrix of m rows and n columns:
Cl’ vee C;l 5!

! ! ’
C(m— 1)n+1 CN Cm

6. Concatenate the values of C,C’ and &, in the following way:
o Foreachelementin C convertitto a string and concatenate all of them in a single value.

o For each element in ¢’ convert it to a string and concatenate all of them in a single
value.

o For each element in ¢, convert it to a string and concatenate all of them in a single
value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result x = Hash(C|C'|E,).

7. Given x and the permutation a = {a, ..., ay}, compute the exponentiation of x to each element

on d@: x% mod p. The resultis b = {by, ..., by} = {x%, ..., x},

8. Given b arrange it in a matrix of m rows and n columns:

bl bn E;
b(m—1)~n+1 bN B—m)

9. Commit to each row B, (for i = 1,...,m) using the Commitment generation primitive with the

following inputs:

o A random exponents; € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
o List of elements to be committed: E
o Commitment key ck = (G4, ..., Gy, H)

www.scytl.com
- s 129

Scytl sVote
Protocol Specifications

Obtain the commitment com,. (B, ; s;).-
After committing to all the rows, define the vector of commitment as ¢z =
(come(By ;51), ., come (B ;) and the vector of randomness as § = (sy, ... Sp)-

10. Concatenate the values of C,C’,é, and & in the following way:

o Foreachelementin € convertitto a string and concatenate all of them in a single value.

o For each element in ¢’ convert it to a string and concatenate all of them in a single

value.

o For each element in ¢, convert it to a string and concatenate all of them in a single

value.

o For each element in ¢z convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute

a hash of the concatenation. Call the result y = Hash(5|5’|EA|EB).
11. Concatenate the values of C, 5’,EA, ¢ and the number 1 in the following way:
o Foreach elementin C convertitto a string and concatenate all of them in a single value.

o For each element in ¢’ convert it to a string and concatenate all of them in a single

value.

o For each element in ¢, convert it to a string and concatenate all of them in a single

value.

o For each element in ¢z convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the number

1 and compute a hash of the concatenation. Call the result z = Hash(C|C'|¢4|¢5|1).

12. For each elementin @ and b compute the following values:

d1=y'a1+b1

dN = y . aN + bN
The resultis d = (dy, ...dy).

13. For each element in d compute:

www.scytl.com
- e 1 30

Scytl sVote
Protocol Specifications

N
bPArg — H(dl _ Z)
i=1

arrange it in a matrix of m rows and n columns

d,—z odp—2z A4
APATg = (: :) = :

dm-1yn+1—2 =+ dy—2 APATI
14. For each element in # and s compute the following values:
tl = y . T'l + Sl
tn =Y Tm + S
The resultis £ = (ty, ..., ty,)

15. Generate m commitments of the vector of length n: (—z, ...,,—z) using the Commitment

generation primitive with the following inputs:
o Exponent: 0
o List of elements to be committed: (—z, ..., —z)
o Commitment key ck = (G4, ..., Gp, H)

Obtain the commitment com,(—2z, ... —, z ; 0).

After computing all the commitments, define the vector of commitments as ¢_, =

(comck(—z, v, —2,0), ..., comy (-2, ..., —2; O))
16. Compute the exponentiation of each element in ¢, to the hash value y: ¢

17. Compute the product of each elementin ¢; by the corresponding element in ¢z and obtain ¢j:
ED == E:i/ . EB'

18. Compute the product of each element in ¢, by the corresponding element in ¢_,: cf‘"g = Cpl_,

19. In case m = 1 the result of the operation above (E:Arg), the matrix AP4™9 and the vector £, will
have only one element and the protocol will not work (more precisely, the Hadamard product
argument required by the Product argument). For this reason, the following modifications should

be done:

. PAr
o Modify ¢,

= Generate a vector with n elements filled with 1: (1, ...,1)

= Commit to the vector using the Commitment generation primitive with the

following inputs:

www.scytl.com
- s 1 31

Scytl sVote

Protocol Specifications

e Exponent0
e List of elements to be committed: (1, ...,1)
e Commitment key (G, ... G, , H)
= Reconstruct the vector 32Arg in the following way:
e The first element of the vector is the value already computed: ¢,c_,

e The second element of the vector is the commitment of the vector:

(1, ...,1) computed in the step above.
o Modify APA79:

= As the matrix AP4"9 has only one row: 4™, define a second row A5*™

containing n elements filled with 1: (1, ...,1)
A’PArg

di—z - d,—z
APATg — 1 n =("113A >
(1 - 1) AZ rg
o Modify &:

= As the vector £ has only element: t,, define a second element t, = 0.

t=(y 1+s5,0)

20. Use the Product argument with the following inputs:

o E’jATg

o APArg

o ¢t

o bPI =T[iLy(d; - 2)

o The commitment key ck = (G4, ..., Gy, H).
21. Given the list of re-encryption parameters g and the vector b compute p = —p - b= — YN pib;
22. Define the vector ¥ = (x1, ..., x™).

23. Compute the exponentiation of each element in € to the corresponding element in %:

Compute the product of these values CME*PATS = T[N, C¥'.

24. Call the Multi-exponentiation argument with the following inputs:

www.scytl.com
| T e 1 32

Scytl sVote
Protocol Specifications

2, >,
o (4 ..,Ch
o CMEprrg
N
(@] CB
- -
o By ..,Bn
=
o S
o p

o Mathematical group (p,q, g9)
o pk
Output
The output of the proof will consist of the following values:
e initialMessage - ¢,
o firstAnswer = Cp
e secondAnswer:
o msgPA - represents the initial message of Product Argument
= commitmentPublicB - ¢,
= iniHPA - Initial message of Hadamard Product Argument
e commitmentPublicB > ¢
= ansHPA - Answer of Hadamard Product Argument
e initial = Initial message of Zero Argument
o commitmentPublicAQ - c,,
o commitmentPublicBM - cg
o commitmentPublicD = ¢,
e answer - Answer of Zero Argument

o exponentsA > a

exponentsB > b

O
o exponentR > r
o exponentS > s

o exponentT >t

www.scytl.com
| e e 1 33

Scytl sVote
Protocol Specifications

iniSVA - represents the initial message of Single Value Product

Argument
o commitmentPublicD 2 ¢4
o commitmentPublicLowDelta = cg
o commitmentPublicHighDelta = ¢,
ansSVA - represents the answer of Single Value Product Argument.
o exponentsTildeA 2 a,, ..., d,
o exponentsTildeB = b, ..., b,

o exponentsTildeR > 7

o exponentsTildeS - §

= iniMEBasic - initial message of multi-exponentiation argument

commitmentPublicAO = ¢y,

2m-1

commitmentPublicB = {Cgk}k=0

ciphertextsE > {E, }27 !

= ansMEBasic = answer of multi-exponentiation argument

exponentsA > a
exponentR 2> r
exponentB 2> b
exponentS > s

randomnessTau =2 t

9.1.8 Decryption proof generation

Based in the Chaum-Pedersen protocol for proving equality of discrete logarithms [7].

Input

Public key containing k elements for some non-fixed k (k must be at least 1): (pky, ..., pky)

Ciphertext containing k+1 elements: (C,, Cy, C,, ..., Ci).

Plaintext containing k elements: (P, P,, ..., Py)

Private Key containing k elements: (sky, ..., sky).

Mathematical group

www.scytl.com

1 34

Scytl sVote
Protocol Specifications

Operation

e For each element in the ciphertext array, besides the first one, compute Ci/P, in the
L

mathematical group, for i=1,..,k . The result is the array of divided ciphertexts:
(C'y,C'4, ., CY).

e Call the Maurer’s Unified Proofs Prover primitive with the following inputs:
1. Mathematical group
2. Function PHI
= Number of inputs = number of private key elements = k
= Number of outputs = 2k
= Array of base elements = [g (from the mathematical group), C,]
= Computation rules = [(1,1); (2,1); (1,2); (2,2); (1,3); (2,3); ...; (1, k); (2, k)]
3. Input data
= An array 2k of group elements = [pk,, C'y, pk,, C'5, ..., Dk, C'i .
= An array of exponents = (sky, ..., Sky)
= Auxiliary string = additional information
e The result is the decryption proof
Output
e Decryption proof
9.1.9 Shamir Threshold Secret Sharing split algorithm
This algorithm follows the specification from [8]:
Input
e Asecrets
e A number of shares k
e A reconstruction threshold t
Operation
e Compute a primer number larger than s: this will be modulo r.
e Compute t-1 random positive integers a; between 1 and r-1, and let a, be s.
e Build the polynomial f(x) = ay + a;x + a,x? + -+ a,_;x* L.
e Each share is computed as (i, f(i)) fori =1, ..., k.

www.scytl.com
- s | 35

Scytl sVote
Protocol Specifications

Output
e Listof shares (i, f(i)) fori =1, ..., k.
9.1.10 Shamir Threshold Secret Sharing reconstruction algorithm
Input
e Listof shares (j, f(j)) forj=0,...,t — 1.
Operation
e Compute Lagrange basis polynomials [; for j = 0,...,t — 1.
» Reconstruct the polynomial f(x) as X525 f(j) - [; (x).
e Recover the secret as s = f(0).
Output
e Secrets.
9.1.11 Random value generation
Input
e The object type (character, digital number, bytes or other)
e The length “n” of the object
Operation
Here we treat each object type in a different way:

e In case the object type is bytes (or bits, if required); the Secure Random objects already provide
methods to return random bytes (or bits).

e In case the object type is not bytes, do the following:

1. Define m to be the possible values that the object can take (for example, in case the

object type is a numeric digit, m=10).
2. Map every possible value that the object can take to a number between 0 and m-1.
3. Compute a random number r between 0 and mn-1. To do that:

* Find the integer i such that 2i=* — 1 < m" — 1 < 2! — 1, generate i random bits

and convert those bits to an unsigned integer.

= If the resulting unsigned integer is strictly greater than m"-1, go to the previous
step.

= Otherwise, output such integer.

4. Letry,ry,...,m_q1 be the base m representation of r.

www.scytl.com
- s | 36

Scytl sVote

Protocol Specifications

5. Undo the map for each r;.
6. Output the resulting symbols.
Output

e An object of the specified type and length.

9.1.12 ElGamal encryption
Input

e The mathematical group defined by (p, q, 9)

e Public key (pky, pk,, ..., pky) (array of length k > 0)

e Plaintext (my, m,, ..., m;,) of at most k element and at least 1 element.
Operation

e The mathematical group defined by (p, q, g9)

e Generate a random exponent r between 1 and g — 1using the Random value generation

primitive.
e Generate the first element of the ciphertext C, = g" mod p.
e If the size of the plaintext is smaller than the size of the public key, compute

1. pk, =pk, + pko, 1+ ko + -+ pk, where the value of pk, on the right is the old

one and the value on the left is the one used from this point onwards.

e For each element in the plaintext, compute the following elements of the cihpertext: C; = (pk;)" -

m; modp fori=1,..n.
Output
e The generated random exponent r

e The ciphertext (Cy, Cy, ..., Cy)

9.1.13 ElGamal decryption
Input

e The mathematical group defined by (p, q, 9)

e Private key (skq, sk, ..., sky) (array of any length k > 0).

e Ciphertext (Cy, Cy, Cs, ..., C,) of at most k+1 elements and at least 2 elements.
Operation

e If the size of the ciphertext is smaller than the size of the public key+1, compute

www.scytl.com
- s 1 3 7

Scytl sVote

Protocol Specifications

1. sk, =sk,+ sk, +Skyip + -+ sk

e For each i from 1 to n compute M; = (C,)~*¥ - C; where the operations are done in the

mathematical group
Output
e The message (M,,..., M,).
9.1.14 Maurer’s Unified Proofs Prover
Based on Maurer’s framework for unifying zero-knowledge proofs of knowledge [9]
Input
e Mathematical Group
e Function PHI
1. Number of inputs r (number of exponents)
2. Number of outputs m
3. Array of base elements [hy, hy, ..., hy].
4. Computation rules, which are specified by:

= for eachifrom 1to m (i.e., each output), a list of pairs of indexes will be given,
where for each pair the first index will be in the range [1, ..., n] and the second

index will be in the range [1, ..., 7].
e Input data
1. An array of m group elements (Cy,..., Cy).
2. An array of r exponents (s, ..., S;).
3. Auxiliary string data "Data"
e Hash function algorithm: SHA2-256/224 [10].
Operation
The operation is divided into three steps:
1. Commit step:
o pick as many random exponents a4, ..., a, as the number of secrets received as input.

o Compute (By,...,B,) = PHI(a4,..,a,). The PHI function computation is described at

the end of this section.

2. Challenge step: compute ¢ = Hash(C,|| C5|| ... |IC|IB1]l... || B || " Data™).

www.scytl.com
- s | 38

Scytl sVote

Protocol Specifications

3. Answer step: for each exponent picked in the commit step, compute z; = a; + ¢ - s;.
The proof which is sent is (c; zy, ..., ;).
Phi function computation
On inputs (sy, ..., s,) the function is computed as follows:
e The computation of the i-th output will be computed as:
o Given the list of pairs (i, j,), (i2,j2), (i3, j3), .- (the computation rules)

o Take the base element with index i; and exponentiate it to the input with index j;. This

gives a patrtial result p, (a group element).

o Similarly, take base element with index i, and exponentiate it to the input with index j,.

This gives a partial result p, (a group element).

o Perform this operation with all pairs of indexes. Then, multiply all the partial results. The

result of the multiplication is the i-th output.
Output
o (¢;24) Zp).
9.1.15 ElGamal Re-encryption
Input
e Encryption Parameters (which contains a mathematical group defined by p, g, g)
e Public Key = (pky, ..., pk;) (array of of any length k>0).
e Ciphertext (Cy, Cy,Cy, ..., Cp)
Operation

e Generate a random exponent s between 1 and g-1 using the Random value generation

primitive.
e Generate the first element of the re-encrypted ciphertext by computing ¢’y = C, - g° mod p.
e Ifn—1 <k, compute

o pk, =pky Pkns1 - Pknss - . Pk mod p where the value of pk,, on the right is the old

one and the value on the left is the one used from this point onwards.

e For the elements (C,,C,,...,C,) in the ciphertext to be re-encrypted, compute: C'; = C; -

pk;® mod p. The new value for pk,, should be used if this applies.
Output

e The generated random exponent s

www.scytl.com
- s | 39

Scytl sVote

Protocol Specifications

e The re-encrypted ciphertext (C'y,C'1,C'5, ..., C'";)
9.1.16 ElGamal ciphertexts permutation
Input

e List of elements {C;}}_,
Operation

e Given the number of elements in the input list, call the Permutation generation. The output is
the permutation: @ = {r (1), ..., m(N)}

e Construct the output list in the following way: for each element in the permutation array 7 (i):
o Take the element of the input list {C;}}_, that is in the position indicated by m(i).
o Set the element in the output list.

Output
e List of permuted elements {Cﬂ(i)}il
e Permutation @ = {m(1), ...,m(N)}

9.1.17 Permutation generation
Input
e Number of elements to be permuted N

Operation

e Generate an array with as many elements as the number of elements received as input. The

value of each position is the position itself: array = [0,1,2 ..., N — 1]
e Permute the values of the array computed in the previous step:
o Fromi=N-1toi=0
= Select a random integer from 0 (inclusive) to i (exclusive): randomIndex
= Swap the values in positions randomindex and i

Output

e Permutation a@ = {n(1), ..., t(N)} = {r(0), ..., (N — 1)} (notice that we use the same notation

that is used in the generation of the proof of s shuffle)

9.1.18 Symmetric key generation
Input

www.scytl.com

1 ey

Scytl sVote
Protocol Specifications

e Key length: 128 bits.
e Provider SunJCE / Forge.
Operation

e Call the Random value generation primitive with input object type = “bytes” and length = key

length (depends on the symmetric encryption algorithm used)

Output

e Symmetric Key
9.1.19 Message Authentication Code generation
Input

e bytearray representing the message to be authenticated

e MAC symmetric key

e Algorithm parameters: HMAC SHA2-256 [10] [11]

e Provider SunJCE/Forge
Operation

e Generate the authentication data of the message using the MAC algorithm and provider

specified and the key provided.

Output

e Message MAC
9.1.20 Key Derivation Function: KDF1 specification
Defined in ISO-18033-2 and in PKCS#1v2.2 [5] with the name MGF1.
Input

e Bytearray to be derived

e Algorithm parameters: SHA2-256 [10]

e Provider BouncyCastle/Forge

e Output length b
Operation

e Given as input a bytearray x, a desired output length b in bits and a hash algorithm with output

length hLen, the primitive works as follows:

o LetT be the empty array

www.scytl.com
__| T 141

Scytl sVote
Protocol Specifications

o Define k = ceil(b/hLen)

o ForifromO to k-1
= Convertito a byte array of 4 bytes |
= Hash the concatenation of x and |
= Concatenate the hashto T
e Output the first b bits of T
Output
e The derived value
9.1.21 Password-based key derivation function
Input
e Password
e Salt
e lterations: 32000
o Key length: 128 hits
e PBKDF2 with HMAC-SHA256
Operation

e Derive the symmetric key from the input password, using the input salt, PBKDF algorithm,
number of iterations and provider and PBKDF output length (given by the “key length”).

Output

e Symmetric Key

9.1.22 Hash generation
Input

e Data
e Algorithm parameters: SHA2-256 [10]
e Provider SUN/Forge

Operation

e Perform a hash of the data provided using the hash algorithm and provider specified in the

internal parameters.
Output

www.scytl.com
| e s 14 2

Scytl sVote
Protocol Specifications

e Hash on input data

9.1.23 Digital signature generation
Input

e Bytearray representing the message to sign

e Signing private key

e Algorithm parameters: signature algorithm RSA with PSS padding and SHA2-256 [10].

e Provider BouncyCastle / Forge / JJWT and Nimbus JOSE (for signatures in JSON).
Operation

e Sign the message using the signing private keys, and the signing algorithm and provider
specified.

Output

e Message signature

9.1.24 Symmetric encryption
Input

e Receives a byte array representing the message to encrypt
e Encryption Symmetric key
e Algorithm parameters: AES GCM [12] [13] with 128 bits’ key.
e Provider BouncyCastle / Forge.

Operation

e Generates a random IV using the Random value generation primitive with the following input:
BYTE type, IV length (given by the encryption algorithm).

e Encrypts the message using the symmetric key, the IV and the encryption algorithm and
provider specified.

Output

e Encrypted message concatenated with the IV

9.1.25 Symmetric decryption
Input
e Byte array representing the message to decrypt concatenated with the IV

e Encryption symmetric private key

e Algorithm parameters: AES GCM [12] [13] with 128 bits’ key.
www.scytl.com

___| e 1 43

Scytl sVote

Protocol Specifications

e Provider BouncyCastle/Forge
Operation

e Decrypt the message using the symmetric key, IV and the encryption algorithm and provider
specified.

Output

e Decrypted message /nOK

9.1.26 Group element generation
Input

e Mathematical group (p,q, 9)
Operation

e Generate a random exponent r € Z, between 1 and g-1 using the Random value generation

primitive.
e Exponentiate the generator g to the random exponent: H = g" mod p
Output

e The group element H

9.1.27 Commitment generation
Input

¢ Random exponent r
e List of elements to be committed: d = (ay, ..., a,) € Zy
e Commitment key ck = (G, ..., Gy, H)
Operation
e Compute the exponentiation of H to r: H”
e For each a; where i = 1, ..., n compute the exponentiation Giai.

e Multiply all the exponentiations and obtain the commitment:

n
come (@;7) = comy(ay, ...,a,;17) = H” nGiai
i=1

Output

e The commitment: com,(@;r)

www.scytl.com
__| T 144

Scytl sVote
Protocol Specifications

9.1.28 Multi-exponentiation argument

Input

L
Cp) s Com

C

-

Ca

A= (Ay, .., 0dp)

7 €Ly

pEL,

p, q, g (the encryption parameters)

pk (public key used to encrypt the votes)

Operation

1.

Generate n random elements between 1 and g-1 (generate it using the Random value

generation primitive) and construct the vector d,.

Generate the following random elements between 1 and g-1 (generate it using the Random

value generation primitive): ry « Z, and by, So, Tg, -+, bam—1, S2m—1, Tam-1 < Zq

Seth,, =0,s,=0,1,=p

Commit to the vector d, using the Commitment generation primitive with the following inputs:
e The exponentr,
e List of elements to be committed: d,
e Commitment key ck = (G4, ..., Gy, H)

The result is the commitment c,, = com, (dy; 1)

Commit to each element by, (k = 0, ...,2m — 1) using the Commitment generation primitive with

the following inputs:
e The exponent s,
e List of elements to be committed: b, (the list contains only one element)
e Commitment key ck = (G, H)

The result is the commitment cg, = comgy (by; si)-

2m-1

After computing all the commitments, we will obtain the set of 2m commitments: {ch}k=0

www.scytl.com
__| T 145

Scytl sVote
Protocol Specifications

6. Foreach pair of elements (b, ty) for k = 0, ...,2m — 1, call the EIGamal encryption primitive with

the following inputs:

* (a9
e pk

o gPk

. T,

The result is the encryption of g’ using 7, as the randomness for encrypting: &, (g°%; 7;)

2m-1

After computing all the encryptions, we will obtain 2m encryption: {Spk (gP%; Tk)}k=o

7. Givend,,...,d,, and 51, ...,5m compute, for each k = 0, ...,2m — 1, the following products:

mm

i=0,/=0
j=(k-m)+1

The exponentiation of a vector to another vector is defined as:

mm
_ bo. Rdj
E, = Epk(g % TO) Ci
i=0,j=0
j=1-m
mm
_ bs. | | =4,
El - gpk(g 1"[1) Ci
i=0,7=0
j=2-m
mm
_ Bym—1. | | Rd;
Eym—1 = Epr (97215 Top—1) C;
i£0,/=0
j=m

The result is the set Ej, = £, (g%; 1) [1™20,j=0 CT’ fork =0,..,2m — 1.
j=(k-m)+1

" and {E,}2™1 in the following way:

9. Concatenate the values of C,C", &, ca,, {ch}izo

e Foreachelementin C convertitto a string and concatenate all of them in a single value.

e For each element in ¢’ convert it to a string and concatenate all of them in a single

value.

e For each element in ¢, convert it to a string and concatenate all of them in a single

value.
www.scytl.com
__| T 146

Scytl sVote
Protocol Specifications

e Convertc,, to a string.
. 2m-1 . . .
e For each element in {ch}k_O convert it to a string and concatenate all of them in a
single value.

e For each element in {E,}27 convert it to a string and concatenate all of them in a

single value.
Concatenate in a single value all the results obtained from the three steps above and compute
a hash of the concatenation. Call the result x = Hash (C|C |Calca, | {ch Zm 1|{ . ?:"0‘1).
10. Compute the following vector ¥ = (x,x?, ...,x™)

11. Arrange the vectors (dy, ..., d,,) in a matrix A having n rows and m columns:

a; - Aem-1)n+1
=@ o dg=(i
an e aN

12. Given d,, A and X compute d = d, + AX, where the product of a matrix by a vector is done in

the standard way.

13. Given #, ¥ and r, compute r =1, + 7 - X, where #-X is the standard inner product # - ¥ =
LiZ1Tix;.
14. Given by, {b; }i";* and X, compute b = by + 227 ! by x*.
15. Given sy, {s,}275* and %, compute s = sy + Yam s, xk.
16. Given 1y, {1, }im ! and X, compute © = 7y + Y27 7, xk.
Output
e Outputd,r,b,s,t
Verification
Check that:
® CaCBy 1 CByy, EG
e Ey..,Eyp,€H
e d€Zjandrb,s,T€EL,

Accept if:

Cp,, = com(0;0) and E;, = C

Canlf = com (@;7)

www.scytl.com
__| T 147

Scytl sVote

Protocol Specifications

2m-1

k
Cp, 1_[Cpy = come(b;s)

k=1

2m-1

m
E, 1_[B = £,,(G" 1) n&xm_iﬁ
k=1 i

i=1

9.1.29 Product argument
With this argument we can demonstrate that a set of committed elements have a particular product

Input
o (4 =comy(A;7) = (ca,,Cay,, - Ca,,) (NOtice that in case m = 1 and according to what is
explained in step 19 this vector will contain 2 elements instead of 1)
e A= (dy..,d,) (notice that in case m = 1 and according to what is explained in step 19 this
vector will contain 2 elements instead of 1)
e 7 =(r,.., 1y (Notice that in case m = 1 and according to what is explained in step 19 this
vector will contain 2 elements instead of 1)
e b=][Z, H?:l aij
e Commitment public key ck
Operation

1. Given the matrix 4

dq a1 Gip
&m Ama1 " Amn

Compute the product of the elements of each column:

m m m
ﬂau,naiz.--wnam
i=1 i=1 i=1

and define the vector b = (T2, a2 a0 TT ain)-

2. Committo b using the Commitment generation primitive with the following inputs:

e A random exponents € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
e List of elements to be committed: b
e Commitment key ck = (G4, ..., Gy, H)

Obtain the commitment ¢, = com, (174 @y, ..., [T7%1 anj 5 s)

www.scytl.com
| T e 1 48

Scytl sVote
Protocol Specifications

3. Engage in a Hadamard product argument given as input ¢y, c,, b, dy, ..., @, 7 s (the name of the
variables is the same here as in the Hadamard product argument)

4. Engage in a Single value product argument given as input:

° bSVPArg =)

o (SvPATg — p
C;‘VPArg =,
Verification
Accept if ¢, € G and both the Hadamard product argument and the Single value argument are

convincing.

9.1.30 Hadamard product argument
Input

o (4 =comy(A;7) = (ca,,Cay, -, Ca,,) (NOtice that in case m = 1 and according to what is
explained in step 19 this vector will contain 2 elements instead of 1.

¢ 6= Comck(l;i s)

e b

e d,,..,d, (notice that in case m = 1 and according to what is explained in step 19 this
vector will contain 2 elements instead of 1)

e 7 =(r,.., 1y (Notice that in case m = 1 and according to what is explained in step 19 this
vector will contain 2 elements instead of 1)

e 5

e Commitment public key ck

Operation
1. Ifm>1:

e Given the matrix 4

a, A1 v Qip
(,_im Am1 " Amn

Compute the vectors 51, s Bm in the following way:

www.scytl.com
| e s 1 49

Scytl sVote

Protocol Specifications

2 2 2
B — e d —
2 = 41a = Qij, Azjy s Apj
j=1 j=1 Jj=1
m-1 m-1 m-1
7 - -
bm—l al am—l - al]) aZ}]] an]
j=1 j=1 j=1
m m m
- R R -
b, =a, - ady = | |a1j,| |a2]-,..,| |an] =b
j=1 j=1 j=1

That is, each vector is computed as Ei = [IL-, d, where the multiplication of two vectors
is the entry-wise product (given ¥ and y of n element, the product Xy is defined as Xy =

(X141, -, XnYn)). Define the matrix B as:

B =

by
e Commit to the vectors 52,...,5m_1 (notice that for 51 and Bm we already have a

commitment) using the Commitment generation primitive with the following inputs:

o A random exponent s; € Z, between 1 and g-1 (generate it using the Random

value generation primitive)
o List of elements to be committed: 7)2
o Commitment key ck = (Gy, ..., Gy, H)
After committing to all the vectors, we will obtain the following commitments:
Cp, = CO"'lck(Bzisz)
CBm—y = Comc.k(l_))m—l;sm—l)
e Define the vector s as
S =10(81,52 e»Sm—1,5m) = (11,52, e, S—1,5)

Notice that the last value of the vector (s) is the randomness used in the commitment
¢, and the first value of the vector () is the first randomness of vector 7 used in the

commitment &,.

¢ Define the commitment to the matrix B as:
g = come(B; §) = (comey(by; 1), Cpyr oves iy yr COMete (b S))
where, comck(zl;sl) = comg,(dy;) and comck(l_;m;sm) =Cp.

2. Ifm=1:

www.scytl.com
- s 1 50

Scytl sVote
Protocol Specifications

e Define b, = d,

e Define b, = d,d,

¢ The commitment to b, is directly the commitment to @,: comey(by; s,) = comg (dy;71)
¢ The commitment to b, is directly the commitment c,: comey(bz; sp) = cp

e Define the vector s as § = (sy,s,) = (1, 5), where r; is the first randomness of vector 7

used in the commitment ¢, and s is the randomness used in the commitment c,,.

e Define the commitment to the matrix B as:

Cp = comy(B;3) = (COmck(b1iS1)' (by; 52)) = (comg(dy;11), ¢p)
3. Concatenate the values of ¢,, ¢, and g in the following way:

e For each element in ¢, convert it to a string and concatenate all of them in a single

value.
e Convert ¢, to a string.

e For each element in ¢z convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and compute
a hash of the concatenation. Call the result x = Hash(C4|c,|C5)

4. Concatenate the values of ¢,, ¢, ,Cg and the number 1 in the following way:

e For each element in ¢, convert it to a string and concatenate all of them in a single

value.
e Convert ¢, to a string.

e For each element in ¢z convert it to a string and concatenate all of them in a single

value.

Concatenate in a single value all the results obtained from the three steps above and the number

1 and compute a hash of the concatenation. Call the result y = Hash(Z4|cp|C5|1).

5 Ifm>1:

e -

e Given the vectors Bl, e, bm_1, by, @nd the hash x, compute the following values:

d, = x'b, mod q

x™1h . mod q

dm-1 =
me

d= Y xib;, modq
i1

www.scytl.com
| e 1 5 1

Scytl sVote
Protocol Specifications

e Given the vector s and the hash x, compute the following values:

t; = xls; mod q

tm-1 = X" 'spm_y mod q

m—1
— i
t= sziﬂ mod q
i=1

6. Ifm=1:
e Given the vectors 1_51,1_52 and the hash x, compute the following values:

= x1b, mod q

1
d = x'b, mod q
e Given the vector s and the hash x, compute the following values:

t; = xts; mod q
t = x's, mod q

7. Commit to each vector cfi using the Commitment generation primitive with the following inputs:
e The corresponding t;
e List of elements to be committed: (fl-
e Commitment key ck = (G, ..., Gy, H)
The result is the commitment cp, = comy (cfl-; t)-

After computing all the commitments, we will obtain cp, ...,cp,, , in case m > 1 and ¢p, in case

m=1.
8. Commit to the vector d using the Commitment generation primitive with the following inputs:
e The corresponding t
e List of elements to be committed: d
e Commitment key ck = (G4, ..., Gy, H)
The result is the commitment ¢, = comck(&; t).

9. Commit to the vector of n elements filled with the value —1 using the Commitment generation

primitive with the following inputs:
e The corresponding (—1,...,—1)
e List of elements to be committed: 0
e Commitment key ck = (G4, ..., Gp, H)
The result is the commitment c_, = comck(—f; 0).

www.scytl.com
- 152

Scytl sVote
Protocol Specifications

10. Engage in a Zero argument given as input:

E»OArg _ COArg 0Arg 0Arg

)’ Ay 1Cay reerCa) = (C1,Cay 0 Cayy) (if m =1 this vector has only two

elements (c_q, ¢4,))-

-0AT 0AT 0AT, 0AT
é 9 _ c g g g

B By +CB, s--Cp) = (Cp,Cp, - Cp,_,) (if m=1this vector has only two

elements (cp, cp,)).
o AVATg — (g9 gOATd, GO4T9) = (—1,d,,...,dy) and

70479 = (£2479 r04T9) = (0,13, ..., 1) (if m = 1 these vectors have only two elements
(=1,d,),(0,72))

o BOTI = (b9 49, b°"9) = (d,d, ..., d,—1) and

50479 = (9479, .., sp"9) = (t,t1, by, o, tm_q) (if m =1 these vectors have only two

elements (d,d,).(t, t;))
Verification

Check that:

® Cp,.Cp, , €EG

L4 C31 = CAl

* (g, =¢p

and define:

m-1

— Xi j— xi j— _).
Cp, =Cg Cp= | | C,, €-1=comg(=1;0)

i=1

Accept if the zero argument is valid.

9.1.31 Zero argument
Input

o C,=comy(4;7)

o (g =comg(B;s)

e (dy,..,a,) (the rows of matrix A. Notice that in case m = 1 this vector contains 2 elements

according to that explained in step 19).

e 7 =(r,.., 1, (Notice that in case m = 1 this vector contains 2 elements according to that

explained in step 19)

www.scytl.com
- 153

Scytl sVote

Protocol Specifications

. (50,...,5m_1) (Notice that in case m =1 this vector contains 2 elements according to that
explained in step 19)

e §=(sq..,5m1) (Notice that in case m = 1 this vector contains 2 elements according to that

explained in step 19)
Operation
1. If m =1 setm = 2 (this change only applies to this argument).

2. Generate n random elements between 1 and g-1 (generate it using the Random value

generation primitive) and construct the vector d,.
3. Commit to the vector d, using the Commitment generation primitive with the following inputs:

e A random exponentr, € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
e List of elements to be committed: a,
e Commitment key ck = (G4, ..., Gp, H)
The result is the commitment ¢, = com,(do; 15).

4. Generate n random elements between 1 and g-1 (generate it using the Random value

generation primitive) and construct the vector Bm.

5. Commit to the vector Bm using the Commitment generation primitive with the following inputs:
e Arandom exponents,, € Z, between 1 and g-1 (generate it using the Random value
generation primitive)
e List of elements to be committed: Bm
e Commitment key ck = (G4, ..., Gp, H)
The result is the commitment c; = com (byn; 5,n)-

6. Define a new operation (we will denote it as *) that given two vectors, (ay, ..., a,) and (d4, ..., d,),

does the following:

n

(al, ...,an) * (d1; ---:dn) = Z ajdfyj

j=1
where y is the hash computed in step 4 of the Hadamard product argument.

7. Compute the values d, =Y, o<ij<m d; * Bj with k =0, ...,2m:
j=(m-k)+i

d0=a0*bm

www.scytl.com
__| T 154

Scytl sVote
Protocol Specifications

- 7 - 7
d1=a0*bm_1+a1*bm

- _’ - _’ - _’
d2=a0*bm_2+a1*bm_1+a2*bm

Define the vector d = (dg, ey dom).

8. Generate 2m + 1 random elements between 1 and g-1 (generate it using the Random value

generation primitive) and construct the vector £ = (t,, ... t,,,). Set the element ¢, of the vector
to0

9. Commit to each element of the vector d using the Commitment generation primitive with the

following inputs:
e The corresponding randomness t;
e List of elements to be committed: d; (list with one element)
e Commitment key ck = (G, H)

The result is the commitment ¢, = come (d;; t;).
10. After computing all the commitment define ¢, as ¢, = come(d; £) = (cpy, -+ Cp,y,,)-
11. Concatenate the values of ¢4, Cp ,cy4,, c,, @and cp in the following way:

e For each element in ¢, convert it to a string and concatenate all of them in a single

value.

e For each element in ¢ convert it to a string and concatenate all of them in a single

value.
e Convert ¢y, to a string.
e Convert cg, toa string.

e For each element in &, convert it to a string and concatenate all of them in a single

value.

www.scytl.com
- S e 1 55

Scytl sVote
Protocol Specifications

Concatenate in a single value all the results obtained from all the steps above and compute a

hash of the concatenation. Call the result x = Hash(¢,|Cglca,|cp,, |Cp)-

12. Given the set of vectors (dg, d,, ..., @) and the hash x compute the vector @ in the following

way:

13. Given the set of values (ry, 1y, -

14. Given the set of vectors (50,131, ...,Bm) and the hash x compute the vector b in the following

way:

15. Given the set of values (s, sy, ...

16. Given the set of values (t, sy, ...

Output
e Outputd,r,b,s,t
Verification
Accept if:
® Cy,Cp, €EG
° 5D € G2m+1
* c¢p,,, =comy(0;0)
e Gbe 7}

° r,s,tEZq

m
b= xmh,

j=0
,Sm) and the hash x compute the value s in the following way:

m

- m—je.
S—Zx Sj

j=0
,t,m) and the hash x compute the value t in the following way:

2m

t= Zx"tk

k=0

e and the following equations hold:

www.scytl.com
__|

1 56

Scytl sVote
Protocol Specifications

m m 2m

xt > xm=J _) xk > 7
| | ca, = comg(d;r) | | cg; = comg(b; s) | | cp, = comg(d * b;t)
i=0 j=0 k=0

9.1.32 Single value product argument
Input

(e

Qu

° =(aq, ..., qy)

o ¢, =comy(d;r)
e TEL,

Operation

1. Given a, compute the following values:

n

by=a; b, =aia, - bn=1_[ai

i=1

2. Generate n random exponents dy, ...d, < Z, between 1 and g-1 using the Random value
generation primitive and define the vector d = (dj, ..., d,).
3. Commit to the vector d using the Commitment generation primitive with the following inputs:

e A random exponentr, € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
e List of elements to be committed: 52
e Commitment key ck = (G4, ..., Gy, H)
The result is the commitment ¢; = comck(cf;)
4. Define two values §; and 6, as &, =d;, 6, =0

5. Generate the random exponents §,, ...,8,_, < Z, between 1 and g-1 using the Random value

generation primitive.
6. Fromd,,...d, and §;,9,, ..., 5,_; compute the following values fori =1, ...,n — 1:

_61d2
—8,d;

6idis

- n—1dn
7. Commit to the elements generated in the previous steps using the Commitment generation
primitive with the following inputs:

www.scytl.com
- S E— 15 /

10.

11.

12.

Output

Scytl sVote
Protocol Specifications

e A random exponent s; € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
e List of elements to be committed (=6, — a,8; — bidy, ..., =8, — A, 6p—1 — bp_1dy)
e Commitment key ck = (G4, ..., Gp—1, H)
The result is the commitment cs = com, (—8;d5, ..., —0p_1d,; S1)
From &, 9,, ..., 8y, dy, ...d,, and a,, ...a, compute the following values fori =1, ...,n — 1:

_62 - a261 - b1d2
—83 — a36, — byd;

—8i41 — Aj416; — bidiyq

_6n - anSn—l - bn—ldn
Commit to the elements generated in the previous steps using the Commitment generation
primitive with the following inputs:

e A random exponent s, € Z, between 1 and g-1 (generate it using the Random value

generation primitive)
e List of elements to be committed:(—8, — a,6; — b, d,, ..., =6, — A 0p_1 — bp_1d;)
e Commitment key ck = (G4, ..., Gp—1, H)
The result is the commitment ¢, = com (6, — a,8; — bidy, ..., 0 — Apdp_1 — bp_1dy; Sy)

Convert the values of ¢,, b ,c;, cs and ¢, to a string and concatenate all of them in a single

value. Compute a hash of the concatenation and call the result x = Hash(c,|b|cglcslca)-
Givend, d, r, r, and x, compute the following values:
CNll = xal + dl

a, =xa, +d,

T=xr+ry
Given b, &1, -, 0n, S1, S, @and x, compute the following values:
by = xb; + 6,
b, = xi)n + 4,

§=xs,+ 5,

output (dy, ..., @), (by, ..., by), 7,5 .

Verification

Accept if:

www.scytl.com

1 1 58

Scytl sVote

Protocol Specifications

® (4Cs5,ChAEG
o ay,by,..,0, b, T35 €T,
e and the following equations hold:

ckcq = comy(@y, ..., @n; 7) cXcs = comey (xby — by@y, ..., xby — bp_18p; §)
51 = &1 ETl = xb
9.2 Optimizations at the voting client context in the voting phase
Several optimizations can be done to reduce the time needed to cast a vote. They are focused on
reducing the number of modular exponentiations to be computed once the voter is ready to send his/her
vote. The modular exponentiations take much more time than any other operation executed by the

voting client, and therefore is where the optimization efforts are focused.
Three strategies can be followed:

e Pre-computation at the voting client: Some modular exponentiations can be computed while

the voter is navigating through the application, and before the voter clicks on the “send” button.

e Pre-computation at configuration: Some modular exponentiations are already being
computed during the configuration. Their results can be stored in the password-sealed KeyStore
sent to the voter at the voting phase, so that they can be recovered, and used to construct the

vote to be sent.

e Use of short exponents: For some operations, exponents may be shorter than what is required
by the mathematical group where the operations are done, without posing a security risk. In [14]
it is demonstrated that full exponents and short exponents are indistinguishable under the
Discrete Logarithm with Short Exponent (DLSE) assumption, and that there is no efficient
algorithm which solves the DLSE problem with non-negligible probability. Currently this

optimization is not used.

9.2.1 Pre-computation at the Voting Client
Pre-computation operations may be done at the voting client by using “multithreading” features given

by web workers. Another alternative is that they are computed between page changes, etc.

There are two kinds of values that can be pre-computed at the voting client: ones which do not depend
on the voter opening her KeyStore (that is, entering the Start Voting Key (SVK;;)), and ones which do

depend on that. Here we provide a specification of how to do pre-computations of both values:
Preconditions for pre-computations:

e Execute the entropy collector when the first page loads, set to an entropy value of 256 bits.

When it stops, the application is ready to start generating random values. Precomputations must

www.scytl.com
- s 159

Scytl sVote
Protocol Specifications

not start before that. If the voter clicks on “send” and the entropy collector has not already

stopped (there is no initialized “prng”), stop it and proceed to do the computations.

e Retrieve the encryption parameters, the Election public key (EL,;) and the Choice Return

Codes encryption public key after the voter has been authenticated (after the voter receives the

authentication token, together with the election and ballot-related information.
e Open the voter Verification Card KeyStore and retrieve the Verification Card Secret Key.
Pre-computations:
1. Voting options encryption
a. Use short exponent for encryption.
b. Precompute encryption values with election public key.
2. Partial Choice Return Codes encryption.
a. Use short exponent for encryption.
b. Precompute encryption values with partial Choice Return Codes encryption public key.
3. Cryptographic proofs generation.

a. Schnorr proof: can be fully computed after step 1 is ready (only CO, the first part of the

precomputed values for the vote encryption, is needed). Short exponents can be used.

b. Exponentiation proof generator: use the pre-compute method to pre-compute part of

the exponentiations.

c. Plaintext equality proof generator: use the pre-compute method to pre-compute part of

the exponentiations.

d. Exponentiated ciphertext pre-computation: raise the pre-computed encryption values

from step 1 to the verification card private key (k;4).
Operations that can be done after a voter selection:

4. Partial Choice Return Codes computation: raise the selected voting option to the verification

card private key (k;q).
Using the pre-computed values after voter finishes selections:

5. Voting options encryption: multiply together all the selected voting options and multiply the result

by the second part (the phi) of the pre-computed values in step 1.
6. Partial Choice Return Codes encryption.

a. Multiply each partial Choice Return Code computed in step 4 to one of the phi

components of the pre-computed encryption values in step 2.

7. Cryptographic proofs generation.

www.scytl.com
- s 1 60

Scytl sVote
Protocol Specifications

a. Exponentiation proof generator: use the generate method from the proof, using the

values pre-computed in step 3.

b. Plaintext equality proof generator: use the generate method from the proof, using the

values pre-computed in step 3.

c. Exponentiated ciphertext pre-computation: Multiply together all the partial Choice
Return Codes computed in step 4 (a multiplication / compression in the mathematical
group). Multiply the result by the second part (the phi) of the values pre-computed in
step 3.c.

9.3 EV Solution Intellectual Property Rights Notice (the Notice)

Scytl sVote is part of a larger system called EV Solution, developed under the "Framework Agreement”
entered into by and between Post CH Ltd (Swiss Post) and Scytl Secure Electronic Voting, S.A. (Scytl)
on September 30", 2015.

Parts of this EV Solution system and other relevant details are defined below.

9.3.1 Definitions

The following terms shall have the meanings specified below:

"EV Solution" means an online voting system consisting of the Scytl Standard Software (also referred
to as Scytl sVote or Scytl Online Voting 2.0) in combination with the Swiss Post-Scytl Software, and all
the associated middleware provided by Scytl as a bundle with the Scytl Standard Software and the
Swiss Post-Scytl Software. Software below middleware (e.g. Linux OS and Windows OS and Oracle

software) that are needed to run the EV Solution are not part of the EV Solution.

"Intellectual Property Rights" or "IPRs", for the purposes of this Notice and pursuant to the
Framework Agreement, means copyright and patent rights (if any), know-how and trade secrets,

performance rights and entitlements to such rights.

"Scytl Online Voting 2.0" is the brand name that was used to identify Scytl Standard Software in the

market.

"Scytl Standard Software" means all software developed by Scytl for the EV Solution, whose
architecture, specifications and capabilities are described in Scytl sVote documents, excluding Swiss
Post-Scytl Software and software developed by Scytl independently to the EV Solution.

"Software" means software code (source code and object code), user interfaces and documentation

(preparatory documentation and manuals) and including releases and patches etc.

"Scytl sVote" means the registered trademark proprietary to Scytl, that identifies Scytl Standard

Software in the market.

www.scytl.com
- s 1 6 1

Scytl sVote

Protocol Specifications

"Swiss Post-Scytl Software"” means the software developed for the EV Solution (excluding Scytl
Standard Software) pursuant to the Framework Agreement. Swiss Post-Scytl Software comprises of the

following:

i Key Translation Module: A mapping service that translates external IDs to internal IDs for

specific entities so that external systems can integrate with sVote.

ii. Swiss Post Integration Tools: A group of applications that allow the integration between Swiss

Post's applications and sVote through file conversions.

iii. Swiss Post Voter Portal Frontend: Frontend application that guides the voters throughout all the

voting steps enabling them to successfully cast a vote for a particular election.
9.3.2 Copyright notice

9.3.2.1 Scytl Standard Software
All intellectual property rights in the Scytl Standard Software are Scytl’s sole property. Scytl owns and
shall retain all rights, title and interest in and to the Scytl Standard Software. Scytl Standard Software is

licensed to Swiss Post under the terms and conditions described in the Framework Agreement.

9.3.2.2 Swiss Post-Scytl Software
All intellectual property rights in the Swiss Post-Scytl Software are the joint property of Scytl and Swiss
Post (Joint IP).

9.3.2.3 EV Solution
All intellectual property rights in the EV Solution other than Joint IP will be owned by Scytl or by third

parties as applicable.

www.scytl.com
- s 1 62

Scytl sVote
Protocol Specifications

www.scytl.com
| e s 1 63

