Swisspost 460d0e0780 sVote source code publication | 6 years ago | |
---|---|---|
.. | ||
lib | 6 years ago | |
spec | 6 years ago | |
.jshintrc | 6 years ago | |
.npmrc | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 6 years ago | |
karma.conf.js | 6 years ago | |
package-lock.json | 6 years ago | |
package.json | 6 years ago | |
pom.xml | 6 years ago |
This module defines the mathematical API for Scytl's JavaScript cryptographic library. The starting point for using this module is the instantiation of a mathematical service.
Start by git cloning the project comm/scytl-cryptolib
from Stash
.
The source code of this module will be found in the directory scytl-cryptolib/cryptolib-js-mathematical/lib
.
To build this module, change to the directory scytl-cryptolib/cryptolib-js-mathematical
and do the following:
npm install
--or--
mvn clean install -DskipTests
The unit tests of this module will be found in the directory scytl-cryptolib/cryptolib-js-mathematical/spec
. To run the tests, change to the directory scytl-cryptolib/cryptolib-js-mathematical
and do the following:
karma test
--or--
mvn test
To only run a chosen test suite, add an f
in front of the corresponding describe
statement. For example:
fdescribe('create a new ZpGroupElement object that should be able to ..',
...
To only run a chosen test, add an f
in front of the corresponding it
statement. For example:
fit('be multiplied with another ZpGroupElement object', function() {
...
Note: To build and test the entire scytl-cryptolib
project, change to the directory scytl-cryptolib
and do the following:
mvn clean install
To generate the JSDoc for this module, change to the directory scytl-cryptolib/cryptolib-js-mathematical
, build the module (if not already done) and do the following:
node_modules/.bin/jsdoc lib
This will generate a file called out
. Double click on the file out/index.html
to view the JSDoc.
npm
install this moduleTo npm
install this module in standalone mode, do the following:
npm install --registry https://nexus.scytl.net/content/groups/public-npm/ scytl-mathematical
To npm
install this module as a dependency of your own module, do the following:
Add the following lines to the dependencies
section of your module's package.json
file.
"scytl-codec": "^2.1.0",
"scytl-securerandom": "^2.1.0",
"scytl-mathematical": "^2.1.0",
Make sure that the .npmrc
file of your module contains the following line.
registry=https://nexus.scytl.net/content/groups/public-npm/
Install all dependencies.
npm install
The following example shows the default way to create a new instance of a mathematical service.
var mathematical = require('scytl-mathematical');
var mathService = mathematical.newService();
The following example shows how to supply one's own secure random service to the mathematical service.
var mathematical = require('scytl-mathematical');
var secureRandom = require('scytl-secureRandom');
var mySecureRandomService = secureRandom.newService();
var mathService = mathematical.newService({secureRandomService: mySecureRandomService});
The following examples show how to create new ZpSubgroup
, ZpGroupElement
, Exponent
and quadratic residue group objects, given the generator, modulus p
and order q
of the Zp subgroup. The quadratic residue group object is a ZpSubgroup
object, defined such that its modulus and order satisfy the relationship p = 2q + 1
.
var mathematical = require('scytl-mathematical');
var forge = require('node-forge');
var BigInteger = forge.jsbn.BigInteger;
var mathService = mathematical.newService();
var p = new BigInteger('23');
var q = new BigInteger('11');
var g = new BigInteger('2');
var elementValue = new BigInteger('3');
var exponentValue = new BigInteger('2');
var group = mathService.newZpSubroup(p, q, g);
var element = mathService.newZpGroupElement(p, q, elementValue);
var exponent = mathService.newExponent(q, exponentValue);
var qrGroup = mathService.newQuadraticResidueGroup(p, q);
The following examples show how to create new ZpSubgroup
, ZpGroupElement
and Exponent
objects from their JSON string representations.
var group = mathService.newZpSubroup(groupJson);
var element = mathService.newZpGubroupElement(elementJson);
var exponent = mathService.newExponent(exponentJson);
The ZpSubgroup
object defines the following properties and functions.
@property p The modulus of the Zp subgroup.
@property q The order of the Zp subgroup.
@property generator The generator element of the Zp subgroup.
@property identity The identity element of the Zp subgroup.
@function equals Checks that the Zp subgroup element is equal to the Zp subgroup element provided as input.
@function isGroupMember Checks whether a Zp group element provided as input is a member of the Zp subgroup.
@function isQuadraticResidueGroup Checks whether the Zp subgroup is a quadratic residue group.
@function toJson Serializes the Zp subgroup into a JSON string representation.
The ZpGroupElement
object defines the following properties and functions.
@property p The modulus of the Zp subgroup to which the Zp group element belongs.
@property q The order of the Zp subgroup to which the Zp group element belongs.
@property value The value of the Zp group element.
@function multiply Multiplies the Zp group element by the Zp group element provided as input.
@function invert Exponentiates the Zp group element with the exponent provided as input.
@function equals Checks that the Zp group element is equal to the Zp group element provided as input.
@function toJson Serializes the Zp group element into a JSON string representation.
The Exponent
object defines the following properties and functions.
@property q The order of the Zp subgroup associated with the exponent.
@property value The value of the exponent.
@function add Adds the exponent to the exponent provided as input.
@function subtract Subtracts the exponent provided as input from the exponent.
@function multiply Multiplies the exponent with the exponent provided as input.
@function negate Negates the exponent.
@function equals Checks whether the exponent is equal to the exponent provided as input.
@function toJson Serializes the exponent into a JSON string representation.
The following examples show how to compress an array of Zp group elements into a single Zp group element or how to compress a number of trailing Zp group elements in the input array so that the output array has the specified number of elements.
var mathArrayCompressor = mathService.newArrayCompressor();
var compressedElement = mathArrayCompressor.compressZpGroupElements(elements);
var compressedElements = mathArrayCompressor.compressTrailingZpGroupElements(elements, numOutputElements);
The following examples show how to compress an array of exponents into a single exponent or how to compress a number of trailing exponents in the input array so that the output array has the specified number of exponents.
var compressedExponent = mathArrayCompressor.compressExponents(exponents);
var compressedExponents = mathArrayCompressor.compressTrailingExponents(exponents, numOutputExponents);
The following examples show how to generate a random Zp group element or a random exponent.
var mathRandomGenerator = mathService.newRandomGenerator();
var element = mathRandomGenerator.nextZpGroupElement(group);
var exponent = mathRandomGenerator.nextExponent(group);
Note: If the additional input argument {useShortExponent: true}
is provided to the method nextZpGroupElement
, then only a so-called short exponent
(presently defined as less than 256 bits) will be used to generate the Zp group element. Similarly, if this input argument is provided to the method nextExponent
then the generated exponent will be a short exponent
.
The following example shows how to generate a random quadratic residue
Zp subgroup with a specified certainty that its order q
is prime.
var qrGroup = mathRandomGenerator.nextQuadraticResidueGroup(pBitLength, certainty);
The following examples show how to exponentiate an array of Zp group elements and how to divide one array of Zp group elements by another.
var mathGroupHandler = mathService.newGroupHandler();
var exponentiatedElements = mathGroupHandler.exponentiateElements(group, elements, exponent, true);
var dividedElements = mathGroupHandler.divideElements(dividendElements, divisorElements);
Note: The value of true in the call to method exponentiateElements
is optional and will trigger a check that all of the Zp group elements provided as input are really members of the Zp subgroup provided as input. By default, this operation is not performed because it can be computationally costly.
The following example shows how to check if an array of Zp group elements are members of the Zp subgroup provided as input. An error will be thrown if any element in the array fails the membership check.
mathGroupHandler.checkGroupMembership(group, elements);
The following example shows how to extract a specified number of members of a specified Zp subgroup from an array of Zp group element values provided as input.
var groupMembers = mathGroupHandler.extractGroupMembers(group, values, numMembersRequired);
The following example shows how to find the smallest possible generator of a Zp subgroup, given its modulus p
and its order q
.
var minGenerator = mathGroupHandler.findMinGenerator(p, q);